Preset Control Valve
with two-stage closing

installation, operating
and maintenance
instructions

model 115-5

GENERAL DESCRIPTION

The OCV Model 115-5 is specifically designed for fuel loading systems, and used in conjunction with a twostage preset meter, it opens fully at the start of the load, then closes in two-stages at the end of the load for “topping off”.

The 115-5 consists of the following components, arranged as shown on the schematic diagram:

1. **Model 65 Basic Valve Assembly**, a hydraulically-operated, diaphragm-actuated, pilot-controlled, globe (or angle) valve which closes with an elastomer-on-metal seal.

2. **Model 450 Two-Way, Normally-Open Solenoid Pilot (S1)**. This pilot is energized to its closed position by the control circuit to enable the valve to hold its low flow shutdown position.

3. **Model 451 Two-Way, Normally-Closed Solenoid Pilot (S2)**. This pilot is the primary electrical control device on the valve. It is energized to its open position to enable the main valve to open, and deenergized to its closed position to make the main valve close.

4. **Model 126 Ejector**, a simple tee fitting with an orifice installed in its inlet port. It provides the necessary pressure balance to enable the remainder of the pilot system to properly control the main valve.

5. **Model 141-2 Needle Valve**, which controls the opening and closing speeds of the valve.

6. **Model 123 Inline Strainer**, which protects the pilot system from solid contaminants in the line fluid.

7. **Model 150 Limit Switch Assembly (LS)**. This is a SPDT switch, rated NEMA 7, actuated by movement of the valve stem. It routes the electrical signals required for the two-stage closing function.

THEORY OF OPERATION

Hydraulic operation of the 115-5 is extremely simple, and may be easily seen by referring to the schematic diagram. When the S2 solenoid (3) is energized, it opens. This allows the pressure from the diaphragm chamber of the main valve to bleed downstream. The valve opens. Conversely, when S2 is deenergized, it closes. Now pressure from the inlet side of the valve...
can build up on the diaphragm, forcing the valve fully and tightly closed. Now, the S1 solenoid (2) can interrupt this action. When it is energized it closes, blocking flow either to or from the main valve diaphragm chamber. Under this condition, the valve is “hydraulically locked” in position.

Now, refer to the wiring diagram to follow the electrical control action. A load is initiated by pulling the lever on the preset counter, moving SW1 and SW2 to their N.O. positions. SW1 therefore energizes S2, allowing the valve to open fully as described above. The valve will remain in this position for the major portion of the loading run.

Shutdown is initiated by the preset counter a certain number of gallons before the end of the load when SW1 switches back to N.C. This deenergizes S2, which starts the valve closed. When the valve is nearly closed, LS switches back to N.C. This energizes S1, which locks the valve in the low flow position. When the preset counter reaches zero, SW2 switches back to N.C., deenergizing S1 and allowing the valve to go fully closed.

INSTALLATION

The 115-5 is furnished fully factory-assembled including all control line tubing.

1. Install the 115-5 on the discharge of the meter, observing the following:

 (a) Before installing the valve, make sure there is no foreign material inside the valve.

 (b) Make sure all tubing connections are secure.

 (c) For ease of maintenance service of the valve and meter, it is recommended that an isolation valve be installed upstream of the meter.

2. Complete all wiring between the meter and valve as shown on the wiring diagram. Make sure that the wiring and conduits is appropriate for hazardous locations.

STARTUP AND ADJUSTMENTS

The following procedures should be followed in the order presented in order to effect an initial startup of the 115-5.

1. Check the adjustment of the limit switch. A good initial adjustment will provide approximately a 1/16" gap between the top of the collar on the indicator stem and the roller on the limit switch arm. To adjust, loosen the set screw in the side of the collar and raise or lower the collar as required.
2. Loosen the jam nut on the needle valve (5). Turn the adjusting screw fully clockwise, then counter-clockwise five full turns.

3. Connect the loading arm to a truck or other appropriate receiving vessel.

4. Start the system by actuating the lever on the preset counter.

5. Carefully loosen a pipe plug in the main valve bonnet until fluid appears around the threads. When only clear fluid (no air) is discharging, retighten the plug.

6. Allow the system to complete the run.

7. When the preset counter trips for first stage closure, observe that the valve travels to the low flow position.

8. When the preset counter trips for second stage closure (zero count), observe that the valve goes fully closed.

9. If the counter goes past zero before the valve reaches the full closed position, increase the closing speed by adjusting the needle valve (5) further counter-clockwise. Alternately, the low flow position may be lowered by raising the collar on the indicator stem slightly, as described in Step 1 above.

SUMMARY OF ADJUSTMENTS

1. Needle valve (2): **Clockwise to decrease** valve opening/closing speed; **counter-clockwise to increase** valve opening/closing speed. **CAUTION:** Do not close the needle valve completely. To do so will keep the valve from operating!

2. Low flow position: The valve’s low flow position may be adjusted by loosening the set screw in the collar on the indicator stem. **Lower** the collar to **increase** the low flow rate. **Raise** the collar to **decrease** the low flow rate.

MAINTENANCE

Required maintenance of the 115-5 is minimal. However, the following steps, periodically performed, will do much to keep the valve operating efficiently and properly.

1. Check for leaks at fittings and around flanges. Tighten as required.

2. Check for chipped or peeling paint. Touch up as required.

3. Check that all electrical wiring is secure.

TROUBLESHOOTING

In the event of malfunction of the 115-5, the following outline should enable the technician to isolate the cause of the problem and to take the appropriate corrective action.

MAIN VALVE FAILS TO OPEN

1. Needle valve (5) closed completely — Open as required. See Adjustment instructions.

2. N.C. solenoid (3) not energized — Check control signals from meter.

3. N.C. solenoid (3) stuck closed or coil burned out — Replace coil. See the Solenoid Valve section of this manual.

3. Diaphragm of main valve (1) ruptured or stem binding — See Model 65 Basic Valve section of this manual.

MAIN VALVE FAILS TO CLOSE

1. Needle valve (5) closed completely — Open as required. See Adjustment instructions.

2. N.C. solenoid (3) not deenergized — Check control signals from meter.

3. N.C. solenoid (3) stuck open or seat deteriorated— Disassemble and determine cause. See the Solenoid Valve section of this manual.
4. N.O. solenoid (2) energized — Check control signals from meter.

5. N.O. solenoid (2) stuck closed — Disassemble and determine cause. See the Solenoid Valve section of this manual.

6. Stem of main valve (1) binding — See the Model 65 Basic Valve section of this manual.

VALVE SKIPS LOW FLOW POSITION ON SHUTDOWN

1. N.O. solenoid (2) not being energized. — Check signals from meter.

2. Coil of N.O. solenoid (2) burned out — Replace coil. See the Solenoid Valve section of this manual.

3. N.O. solenoid (2) stuck open — Disassemble and determine cause. See the Solenoid Valve section of this manual.

4. Limit switch (7) defective — Repair or replace as necessary.

VALVE DOES NOT GO TO FULL SHUTOFF

1. N.O. solenoid (3) not being deenergized — Check signals from meter.

2. N.O. solenoid (3) stuck closed — Disassemble and determine cause. See the Solenoid Valve section of this manual.

3. Seat of main valve (1) damaged. — See the Model 65 Basic Valve section of this manual.
GENERAL DESCRIPTION
The OCV Series 65 is a hydraulically-operated, diaphragm-actuated valve. It is available in either a globe (Model 65) or angle (Model 65A) configuration. The diaphragm is nylon-fabric bonded with synthetic rubber and forms a sealed chamber in the upper portion of the valve, separating operating pressure from line pressure. An elastomeric seat disc forms a tight seal with the valve seat when pressure is applied above the diaphragm.

FUNCTIONAL DESCRIPTION
Because the Series 65 is a hydraulically operated valve, it requires a minimum line pressure of approximately 5 psig in order to function. The valve functions on a simple principle of pressure differential. The line pressure at the inlet of the valve is bypassed through the pilot control piping to the diaphragm chamber of the valve. This pressure, together with the valve spring, works against the pressure under the valve seat. Because the effective area of the diaphragm is greater than that of the seat, the valve is held tightly closed. As the controlling pilot(s) allows the pressure to bleed off the diaphragm chamber, the two opposing pressures begin to balance and the valve will begin to open. The valve can be used to perform a simple on-off function, or with the proper pilot system, a modulating, or regulating function.

In cases where the line fluid is unusually dirty, or is otherwise unsuitable for operating the valve, an independent operating pressure source may be employed. The pressure available from such a source must be equal to, or greater than, line pressure.

INSTALLATION
In order to insure safe, accurate and efficient operation of the OCV control valve, the following list of checkpoints and procedures should be followed when installing the valve.

1. Make a careful visual inspection of the valve to insure that there has been no damage to the external piping, fittings or controls. Check that all fittings are tight.
2. Thoroughly flush all interconnecting piping of chips, scale and foreign matter prior to mounting the valve.
3. Install the valve in the line according to the flow arrow on the inlet flange. The arrow should point downstream.
4. Allow sufficient room around the valve for ease of adjustment and maintenance service.

In addition, it is highly recommended that:
1. Isolation valves (eg., gate or butterfly) be installed on the inlet and discharge sides of the valve to facilitate isolating the valve for maintenance.
2. Pressure gauges be installed at the inlet and outlet sides of the valve to provide monitoring of the valve during initial start-up and during operation. The body side ports, if unused by the pilot system, provide a convenient connection for the gauges.
3. All valves larger than 6" be installed horizontally, i.e., with the bonnet pointed up, for ease of adjustment and maintenance servicing.

MAINTENANCE
The OCV control valve requires no lubrication and a minimum of maintenance. However, a periodic inspection should be established to determine how the fluid being handled is affecting the efficiency of the valve. In a water system, for example, the fluid velocity as well as the substances occurring in natural waters, such as dissolved minerals and suspended particles, vary in every installation. The effect of these actions or substances must be determined by inspection. It is recommended that an annual inspection, which includes ex-
amination of the valve interior, be conducted. Particular attention should be paid to the elastomeric parts, i.e., the diaphragm and seat disc. Any obviously worn parts should be replaced.

REPAIR PROCEDURES

In the event of malfunction of the OCV control valve, troubleshooting should be conducted according to the procedures outlined for the specific model of valve. Then, if those steps indicate a problem with the main valve, this section will outline the procedures necessary to correct the problem.

Problems with the main valve can be classed in three basic categories:

1. VALVE FAILS TO OPEN
 a. Diaphragm damaged* - See Procedure A
 b. Stem binding - See Procedure B

2. VALVE FAILS TO CLOSE
 a. Diaphragm damaged* - See Procedure A
 b. Stem binding - See Procedure B
 c. Object lodged in valve - See Procedure B

3. VALVE OPENS AND CLOSES BUT LEAKS WHEN CLOSED
 a. Seat disc damaged - See Procedure C
 b. Seat ring damaged - See Procedure D

*A diaphragm failure can prevent the valve from either opening or closing, depending on the flow direction. Most water service valves flow “under the seat”, in which case a diaphragm failure will keep the valve from closing. On the other hand, most fuel service valves flow “over the seat”, in which case a diaphragm failure will keep the valve from opening. To determine which you have, examine the bridge mark cast into the side of the valve body, then compare it with the figures below.

PROCEDURE A: DIAPHRAGM REPLACEMENT

1. Isolate the valve from the system by closing upstream and downstream block valves.
2. Loosen one of the tubing connections on the bonnet. Allow any residual pressure to bleed off.
3. Remove all tubing connected at the bonnet.
4. Remove the bonnet nuts.
5. Remove the bonnet. If the bonnet sticks in place, it may be loosened by rapping sharply around its edge with a rubber-headed mallet. NOTE: 8" and larger valves are equipped with eye bolts through which a chain can be fastened to aid in lifting the bonnet.
6. Remove the spring.
7. Remove the diaphragm plate capscrews and the diaphragm plate.
8. Remove the old diaphragm.
9. Making sure the dowel pin holes are in the proper location, place the new diaphragm over the studs and press down until it is flat against the body and spool.
10. Replace the diaphragm plate and the diaphragm plate capscrews.
11. Tighten all diaphragm plate capscrews snugly.
12. Replace the spring.
13. Replace the bonnet and reinstall the bonnet nuts.
14. Tighten the bonnet nuts snugly using a criss-cross tightening pattern.
15. Reinstall the control tubing.
16. Reopen the upstream and downstream block valves.
17. Before placing the valve back in service, perform the air bleed procedure described in the first section of this manual.

PROCEDURE B: CORRECTION OF BINDING STEM

1. Perform Steps 1 thru 6 of Procedure A, above.
2. Remove the spool assembly from the valve. NOTE:

 ![Flow Diagram]

 FLOW UNDER SEAT
 DIAPHRAGM FAILURE = VALVE FAILS TO CLOSE

 ![Flow Diagram]

 FLOW OVER SEAT
 DIAPHRAGM FAILURE = VALVE FAILS TO OPEN

 On smaller valves, this can be accomplished simply by grasping the stem and pulling upward. Valves 6" and larger have the top of the stem threaded to accept an eyebolt to aid in lifting the spool out of the body. 6" thru 12" valves are threaded 3/8-16. 14" and 16" valves are threaded 5/8-11.

3. Carefully examine both ends of the stem for deep scratches, scoring or buildup of mineral deposits.

7400 East 42nd Place / Tulsa, Oklahoma 74145 - 4744 USA / (918) 627-1942 / 888-OCV-VALV / FAX 918-622-8916
e-mail: sales@controlvalves.com / website: www.controlvalves.com
Polish the stem if necessary using a fine grade of emery cloth.

4. Similarly, examine and polish the upper bushing (in the bonnet) and the lower guide (in the seat ring).

5. Reinstall the spool assembly.

6. Reassemble the valve, following Steps 12 thru 17 in Procedure A.

PROCEDURE C: SEAT DISC REPLACEMENT

1. Perform Steps 1 and 2 of Procedure B, above.

2. With the spool assembly removed from the body, remove the seat retainer screws.

3. Slide the seat retainer off the lower end of the stem.

4. Remove the seat disc from its groove in the spool.

 NOTE: The seat disc may fit quite tightly in the groove. If necessary, it may be pried out using a thin-bladed screwdriver or similar tool.

5. Install the new seat disc in the groove.

6. Reinstall the seat retainer and tighten the seat retainer screws.

7. Reassemble the valve, following Steps 5 and 6 of Procedure B.

PROCEDURE D: SEAT RING REPLACEMENT

NOTE: It is rare for a seat ring to require replacement. Minor nicks and scratches in the seating surface can usually be smoothed out with emery cloth.

1. Perform Steps 1 and 2 of Procedure B, above.

2. If you are working on a 4" or smaller valve, follow Steps 3 thru 9, below.

3. If you are working on a 6" or larger valve, follow Steps 10 thru 16, below.

4. Seat rings in valves 4" and smaller are threaded into the valve body. To remove, you will need a special seat ring tool. You may fabricate one using standard pipe as shown in the sketch below, or one may be purchased from OCV.

5. Using the seat ring tool, unthread the seat ring from the body.

6. Remove the old o-ring from the counterbore in the body.

7. Install the new o-ring in the counterbore.

8. Using the seat ring tool, install the new seat ring.

9. Reassemble the valve, following Steps 5 & 6 of Procedure B.

10. Seat rings in valves 6" and larger are bolted into the body with socket head capscrews. In addition you will note that the seat ring is equipped with additional threaded holes that may be used for “jacking” the seat ring out of the body.

11. Remove the socket head capscrews.

12. Remove the old seat ring from the body by temporarily installing two or more of the capscrews in the “jacking” holes.

13. Install a new o-ring in the groove of the new seat ring. Lubricate the o-ring and outer seat ring wall with Vaseline® or similar lubricant.

14. Install the new seat ring in the body, making sure that the capscrew holes line up.

15. Replace and tighten all the capscrews.

16. Reassemble the valve, following Steps 5 and 6 of Procedure B.

Table: Valve Dimensions

<table>
<thead>
<tr>
<th>VALVE SIZE</th>
<th>"A"</th>
<th>"B"</th>
<th>"C"</th>
<th>"D"</th>
<th>No. of SLOTS</th>
<th>"E"</th>
<th>"F"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/4"</td>
<td>3/4"</td>
<td>6"</td>
<td>3/8"</td>
<td>3/8"</td>
<td>2</td>
<td>180°</td>
<td></td>
</tr>
<tr>
<td>1-1/2"</td>
<td>3/4"</td>
<td>7"</td>
<td>3/8"</td>
<td>3/8"</td>
<td>2</td>
<td>180°</td>
<td></td>
</tr>
<tr>
<td>2"</td>
<td>1-1/2"</td>
<td>8"</td>
<td>3/8"</td>
<td>3/8"</td>
<td>2</td>
<td>180°</td>
<td></td>
</tr>
<tr>
<td>2-1/2"</td>
<td>2"</td>
<td>9"</td>
<td>1/2"</td>
<td>1/2"</td>
<td>3</td>
<td>120°</td>
<td></td>
</tr>
<tr>
<td>3"</td>
<td>2-1/2"</td>
<td>10"</td>
<td>5/8"</td>
<td>5/8"</td>
<td>2</td>
<td>180°</td>
<td></td>
</tr>
<tr>
<td>4"</td>
<td>3"</td>
<td>10"</td>
<td>5/8"</td>
<td>5/8"</td>
<td>2</td>
<td>180°</td>
<td></td>
</tr>
</tbody>
</table>

REVISED 3-17-97
Valve Size

<table>
<thead>
<tr>
<th>DIM</th>
<th>ANSI CLASS</th>
<th>1/4</th>
<th>1/2</th>
<th>2</th>
<th>2 1/2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S.E</td>
<td>8.75</td>
<td>8.75</td>
<td>9.88</td>
<td>10.50</td>
<td>13.00</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>A</td>
<td>150</td>
<td>8.50</td>
<td>8.50</td>
<td>9.38</td>
<td>10.50</td>
<td>12.00</td>
<td>15.00</td>
<td>17.75</td>
<td>25.38</td>
<td>29.75</td>
<td>34.00</td>
<td>39.00</td>
<td>40.38</td>
<td>62.00</td>
</tr>
<tr>
<td></td>
<td>SE</td>
<td>1.44</td>
<td>1.44</td>
<td>1.69</td>
<td>1.88</td>
<td>2.25</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>B</td>
<td>150</td>
<td>2.31</td>
<td>2.50</td>
<td>3.00</td>
<td>3.50</td>
<td>3.75</td>
<td>4.50</td>
<td>5.50</td>
<td>6.75</td>
<td>8.00</td>
<td>9.50</td>
<td>10.62</td>
<td>11.75</td>
<td>16.00</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>2.62</td>
<td>3.06</td>
<td>3.25</td>
<td>3.75</td>
<td>4.12</td>
<td>5.00</td>
<td>6.25</td>
<td>7.50</td>
<td>8.75</td>
<td>10.25</td>
<td>11.50</td>
<td>12.75</td>
<td>18.00</td>
</tr>
<tr>
<td></td>
<td>SE</td>
<td>4.38</td>
<td>4.38</td>
<td>4.75</td>
<td>6.00</td>
<td>6.50</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C</td>
<td>150</td>
<td>4.25</td>
<td>4.25</td>
<td>4.75</td>
<td>6.00</td>
<td>6.00</td>
<td>7.50</td>
<td>10.00</td>
<td>12.69</td>
<td>14.88</td>
<td>17.00</td>
<td>–</td>
<td>20.81</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>4.38</td>
<td>4.38</td>
<td>5.00</td>
<td>6.38</td>
<td>6.38</td>
<td>7.81</td>
<td>10.50</td>
<td>13.19</td>
<td>15.56</td>
<td>17.75</td>
<td>–</td>
<td>21.62</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>SE</td>
<td>3.12</td>
<td>3.12</td>
<td>3.88</td>
<td>4.00</td>
<td>4.50</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D</td>
<td>150</td>
<td>3.00</td>
<td>3.00</td>
<td>3.88</td>
<td>4.00</td>
<td>4.00</td>
<td>5.50</td>
<td>6.00</td>
<td>8.00</td>
<td>11.38</td>
<td>11.00</td>
<td>–</td>
<td>15.69</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>3.25</td>
<td>3.25</td>
<td>4.12</td>
<td>4.38</td>
<td>4.38</td>
<td>5.81</td>
<td>6.50</td>
<td>8.50</td>
<td>12.06</td>
<td>11.75</td>
<td>–</td>
<td>16.50</td>
<td>–</td>
</tr>
<tr>
<td>E</td>
<td>ALL</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
<td>7.00</td>
<td>6.50</td>
<td>7.92</td>
<td>10.00</td>
<td>11.88</td>
<td>15.38</td>
<td>17.00</td>
<td>18.00</td>
<td>19.00</td>
<td>27.00</td>
</tr>
<tr>
<td>G</td>
<td>ALL</td>
<td>6.00</td>
<td>6.00</td>
<td>6.75</td>
<td>7.69</td>
<td>8.75</td>
<td>11.75</td>
<td>14.00</td>
<td>21.00</td>
<td>24.50</td>
<td>28.00</td>
<td>31.25</td>
<td>34.50</td>
<td>52.00</td>
</tr>
<tr>
<td>H</td>
<td>ALL</td>
<td>10.00</td>
<td>10.00</td>
<td>11.00</td>
<td>11.00</td>
<td>11.00</td>
<td>12.00</td>
<td>13.00</td>
<td>14.00</td>
<td>17.00</td>
<td>18.00</td>
<td>20.00</td>
<td>20.00</td>
<td>28.50</td>
</tr>
</tbody>
</table>

NOTE: 3" VALVE DIMENSIONS ARE FOR NEW MODEL 3100

4" VALVE DIMENSIONS ARE FOR NEW MODEL 4400

Tolerances

- **Unless noted:** Fractional ±1/64
- **Decimal ±0.005**
- **Machined Finish 125/16**
- **Angular ±1/2°**

O.C.V. Control Valves
TULSA, OKLAHOMA U.S.A.

General Valve Dimensions

<table>
<thead>
<tr>
<th>SIZE</th>
<th>DRAWING NUMBER</th>
<th>REV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>65D</td>
<td>B</td>
</tr>
</tbody>
</table>

Drawing:
- **REV. A** SDJ 6-6-02
- **REV. B** SDJ 2-3-03
Installation & Maintenance Instructions

2-WAY DIRECT-ACTING SOLENOID VALVES
NORMALLY OPEN OR NORMALLY CLOSED OPERATION
BRASS OR STAINLESS STEEL CONSTRUCTION - 1/8", 1/4", OR 3/8" NPT

SERIES
8262
8263

Form No.V5258R7

IMPORTANT: See separate solenoid installation and maintenance instructions for information on: Wiring, Solenoid Temperature, Causes of Improper Operation, and Coil or Solenoid Replacement.

DESCRIPTION

Series 8262 and 8263 valves are 2-way direct-acting general service solenoid valves. Valves' bodies are of rugged brass or stainless steel. Series 8262 or 8263 valves may be provided with a general purpose or explosionproof solenoid enclosure.

Series 8262 and 8263 valves with suffix "P" in the catalog number are designed for dry inert gas and non-lubricated air service.

OPERATION

Normally Open: Valve is open when solenoid is de-energized; closed when energized.

Normally Closed: Valve is closed when solenoid is de-energized; open when energized.

IMPORTANT: No Minimum operating pressure required.

Manual Operator (Optional)

Manual operator allows manual operation when desired or during an electrical power outage. Two types of manual operators are available - push type (Suffix MO) and screw type (Suffix MS). To operate valve manually with push type operator, push stem at base of valve body as far upward as possible. Valve will now be in the same position as when the solenoid is energized. Removing pressure from stem will release manual operator to original position. To operate valve with a screw type manual operator, rotate manual operator stem at base of valve body clockwise until it hits a stop. Valve will now be in the same position as when the solenoid is energized. Rotate manual operator stem fully counterclockwise before operating valve electrically.

Flow Metering Devices

Valves with suffix "M" in catalog number are provided with a metering device for flow control. Turn stem to right to reduce flow, left to increase flow.

INSTALLATION

Check nameplate for correct catalog number, pressure, voltage, frequency, and service. Never apply incompatible fluids or exceed pressure rating of the valve. Installation and valve maintenance to be performed by qualified personnel.

Note: Inlet port will either be marked "I" or "IN". Outlet port will be marked "2".

Future Service Considerations

Provision should be made for performing seat leakage, external leakage, and operational tests on the valve with a nonhazardous, noncombustible fluid after disassembly and reassembly.

Temperature Limitations

For maximum valve ambient and fluid temperatures, refer to charts below. Check catalog number, coil prefix, suffix, and watt rating on nameplate to determine the maximum temperatures.

<table>
<thead>
<tr>
<th>Wattage</th>
<th>Catalog Number</th>
<th>Coil Class</th>
<th>Max. Ambient Temp. °F</th>
<th>Max. Fluid Temp. °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>6, 10, 5, 12.4</td>
<td>none, DA or S</td>
<td>A</td>
<td>77</td>
<td>180</td>
</tr>
<tr>
<td>6, 10, 5</td>
<td>DF, FT or SF</td>
<td>F</td>
<td>125</td>
<td>180</td>
</tr>
<tr>
<td>6, 10, 5</td>
<td>HT</td>
<td>H</td>
<td>140</td>
<td>180</td>
</tr>
<tr>
<td>9, 10.7</td>
<td>none, DP or SP</td>
<td>F</td>
<td>77</td>
<td>180</td>
</tr>
<tr>
<td>9.7</td>
<td>none, FT or HT</td>
<td>A, F or H</td>
<td>77</td>
<td>120</td>
</tr>
<tr>
<td>11.2</td>
<td>none, FT or HT</td>
<td>A, F or H</td>
<td>77</td>
<td>150</td>
</tr>
<tr>
<td>16.7</td>
<td>none, DP or SP</td>
<td>F</td>
<td>77</td>
<td>200</td>
</tr>
<tr>
<td>17.1</td>
<td>none, KP or SD</td>
<td>F</td>
<td>125</td>
<td>180</td>
</tr>
<tr>
<td>17.1</td>
<td>HB, KB SS or SV</td>
<td>H</td>
<td>140</td>
<td>180</td>
</tr>
</tbody>
</table>

Catalog Nos. 8262B200 and 8262C200 AC construction only and Catalog Nos. 8262B214 and 8262D200 AC and DC construction are limited to 140°F fluid temperature. Valves with suffix V or W that are designed for AC service and normally closed operation are for use with No. 2 and 4 fuel oil service. These valves have the same maximum temperatures per the above table except Suffix W valves are limited to a maximum fluid temperature of 140°F.

Listed below are valves with Suffix V in the catalog number that are acceptable for higher temperatures.

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Max. Ambient Temp. °F</th>
<th>Max. Fluid Temp. °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT8262, HB8262</td>
<td>125</td>
<td>250*</td>
</tr>
<tr>
<td>FT8263, HB8263, 8262G, 8263G</td>
<td>140</td>
<td>250</td>
</tr>
</tbody>
</table>

*The only exception is the 8262G and 8263G series (Class F coil) at 50 Hertz rated 11.1 and 17.1 watts are limited to 210°F fluid temperature.

Positioning

This valve is designed to perform properly when mounted in any position. However, for optimum life and performance, the solenoid should be mounted vertically and upright to reduce the possibility of foreign matter accumulating in the solenoid base sub-assembly area. Valves with suffix "P" in the catalog number must be mounted with the solenoid vertical and upright.
Mounting
Refer to Figure 2 for mounting dimensions.

Piping
Connect piping or tubing to valve according to markings on valve body. Inlet port will either be marked "1" or "IN". Outlet port will be marked "2". Wipe the pipe threads clean of cutting oils. Apply pipe compound sparingly to make pipe threads only. If applied to valve threads, the compound may enter the valve and cause operational difficulty. Avoid pipe strain by properly supporting and aligning piping. When tightening the pipe, do not use valve or solenoid as a lever. Locate wrenches applied to valve body or piping as close as possible to connection point.

IMPORTANT: To protect the solenoid valve, install a strainer or filter suitable for the service involved, in the inlet side as close to the valve as possible. Clean periodically depending on service conditions. See ASCO Series 8600, 8601 and 8602 for strainers.

MAINTENANCE

⚠️ WARNING: To prevent the possibility of personal injury or property damage, turn off electrical power, depressurize valve, and vent fluid to a safe area before servicing the valve.

NOTE: It is not necessary to remove the valve from the pipeline for repairs.

Cleaning
All solenoid valves should be cleaned periodically. The time between cleanings will vary depending on the medium and service conditions. In general, if the voltage to the coil is correct, sluggish valve operation, excessive noise or leakage will indicate that cleaning is required. In the extreme case, faulty valve operation will occur and the valve may fail to open or close. Clean valve strainer or filter when cleaning the valve.

Preventive Maintenance
1. Keep the medium flowing through the valve as free from dirt and foreign material as possible.
2. While in service, the valve should be operated at least once a month to ensure proper opening and closing.
3. Depending on the medium and service conditions, periodic inspection of internal valve parts for damage or excessive wear is recommended. Thoroughly clean all parts. If parts are worn or damaged, install a complete ASCO Rebuild Kit.

Causes of Improper Operation
1. Incorrect Pressure: Check valve pressure. Pressure to valve must be within range specified on nameplate.
2. Excessive Leaking: Disassemble valve (see Maintenance) and clean all parts. If parts are worn or damaged, install a complete ASCO Rebuild Kit.

Valve Disassembly

⚠️ WARNING: To prevent the possibility of personal injury or property damage, turn off electrical power, depressurize valve, and vent fluid to a safe area before servicing the valve.

1. Disassemble valve using exploded views for identification of parts.
2. Remove solenoid, see separate instructions.
3. Unscrew solenoid base sub-assembly or valve bonnet with special wrench adapter supplied in ASCO Rebuild Kit. For wrench adapter only, order No. K218-948. Remove core assembly, core spring, and solenoid base gasket from valve body. For normal maintenance on Series 8263 valves it is not necessary to remove valve seat. See Figure 1 for metering or manual operator constructions.
4. For normally open construction (Figure 3) remove end cap, or manual operator, (not shown) end cap gasket, disc holder spring, and disc holder assembly.
5. All parts are now accessible to clean or replace. If parts are worn or damaged, install a complete ASCO Rebuild Kit.

Valve Reassembly
1. Use exploded views for identification, orientation and placement of parts.
2. Lubricate all gaskets with DOW CORNING® 111 Compound lubricant or an equivalent high-grade silicone grease.
3. For normally open construction (Figure 3), install disc holder assembly, disc holder spring, end cap gasket and end cap or manual operator. For valves with 1/8" NPT, torque end cap or manual operator to 90 ± 10 in-lbs (10.2 ± 1.1 Nm). For all other valves torque end cap or manual operator to 175 ± 25 in-lbs (19.8 ± 2.8 Nm).
4. For Series 8263 apply a small amount of LOCITITE® PST® pipe sealant to threads of valve seat (if removed). Follow manufacturer instructions for application of pipe sealant. Then install valve seat and torque to 75 ± 10 in-lbs (8.5 ± 1.1 Nm).
5. Replace solenoid base gasket, core assembly with core spring and solenoid base sub-assembly or plug nut/core tube sub-assembly and valve bonnet. Note: For core assemblies with internal type core springs, install wide end of core spring in core assembly first, closed end of core spring protrudes from top of core assembly.
6. For 1/8" NPT valve constructions, Torque valve bonnet to 90 ± 10 in-lbs (10.2 ± 1.1 Nm). Torque solenoid base sub-assembly to 175 ± 25 in-lbs (19.8 ± 2.8 Nm).
7. Install solenoid, see separate solenoid instructions. Then make electrical hookup to solenoid.

⚠️ WARNING: To prevent the possibility of personal injury or property damage, check valve for proper operation before returning to service. Also perform internal seat and external leakage tests with a nonhazardous, noncombustible fluid.

8. Restore line pressure and electrical power supply to valve.
9. After maintenance is completed, operate the valve a few times to be sure of proper operation. A metallic "click" signifies the solenoid is operating.

ORDERING INFORMATION
FOR ASCO REBUILD KITS

Parts marked with an asterisk (*) in the exploded view are supplied in Rebuild Kits.

* When Ordering Rebuild Kits for ASCO valves, order the Rebuild Kit number stamped on the valve nameplate. +
+ If the number of the kit is not visible, order by indicating the number of kits required, and the Catalog Number and Serial Number of the valve(s) for which they are intended.

Figure 1. Metering and Manual Operator Constructions

Form No.V5256R7

ASCO Valves

Automatic Switch Co. 50-60 Hanover Road, Florham Park, New Jersey 07932

Page 2 of 4
Bonnet wrench supplied in ASCO Rebuild Kits.
For bonnet wrench only order No. K218-948.

** Indicates Parts Supplied in ASCO Rebuild Kits.

** Torque Chart **

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Torque value Inch-Pounds</th>
<th>Torque value Newton-Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>solenoid base sub-assembly</td>
<td>175 ± 25</td>
<td>19.8 ± 2.8</td>
</tr>
<tr>
<td>valve bonnet</td>
<td>90 ± 10</td>
<td>10.2 ± 1.1</td>
</tr>
<tr>
<td>valve seat</td>
<td>75 ± 10</td>
<td>8.5 ± 1.1</td>
</tr>
</tbody>
</table>

Figure 2. Series 8262 and 8263, Normally Closed Construction

Note:
Wide end of core spring in core first, closed end protrudes from top of core.
Torque Chart

<table>
<thead>
<tr>
<th>Part Name</th>
<th>Torque value Inch-Pounds</th>
<th>Torque value Newton-Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>solenoid base sub-assembly</td>
<td>175 ± 25</td>
<td>19.8 ± 2.8</td>
</tr>
<tr>
<td>end cap, 1/4" NPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>valve bonnet</td>
<td>90 ± 10</td>
<td>10.2 ± 1.1</td>
</tr>
<tr>
<td>end cap, 1/8" NPT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. For mounting, a flat surface must be provided across the entire length of the bracket. The valve body becomes secure to bracket, when bracket is tightened in to position.
2. Body inverted for in-line piping. Inverted 1 is valve inlet and inverted 2 is valve outlet.
3. Wide end of core spring in core first, closed end protrudes from top of core.
4. Bonnet wrench supplied in ASCO Rebuild Kit. For bonnet wrench only order No. K218-948.
DESCRIPTION

MODEL 126 EJECTOR

The Model 126 ejector is a simple tee fitting with a fixed orifice in its inlet port. It provides the proper supply pressure to the main valve diaphragm chamber, allowing various two-way control pilots to control the valve position.

MODEL 126 EJECTOR DIAGRAM

Brass Construction / Stainless Steel Construction

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PART NUMBER</th>
<th>P (NPT)</th>
<th>T-TUBE O.D.</th>
<th>STD. ORIFICE</th>
<th>USED ON VALVE SIZES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brass</td>
<td>213100</td>
<td>3/8"</td>
<td>3/8"</td>
<td>.125"</td>
<td>1 1/2"-6"</td>
</tr>
<tr>
<td>Brass</td>
<td>214100</td>
<td>1/2"</td>
<td>1/2"</td>
<td>.188"</td>
<td>8"-10"</td>
</tr>
<tr>
<td>Brass</td>
<td>215100</td>
<td>3/4"</td>
<td>3/4"</td>
<td>.188"</td>
<td>12"-16"</td>
</tr>
<tr>
<td>316 S.S. Steel</td>
<td>213700</td>
<td>1/4"</td>
<td>3/8"</td>
<td>.090"</td>
<td>1 1/2"-6"</td>
</tr>
<tr>
<td>316 S.S. Steel</td>
<td>214700</td>
<td>3/8"</td>
<td>1/2"</td>
<td>.125"</td>
<td>8"-10"</td>
</tr>
<tr>
<td>316 S.S. Steel</td>
<td>215700</td>
<td>1/2"</td>
<td>3/4"</td>
<td>.188"</td>
<td>12"-16"</td>
</tr>
</tbody>
</table>

STAINLESS

BRASS

Orifice bushings are stainless steel.

SCHEMATIC SYMBOL

The Model 126 Ejector is shown on OCV Valve Schematics as:

EXAMPLE: Shown here on a MODEL 127-3 Pressure Reducing Valve
DESCRIPTION

The Model 141-2 Needle Valve is an adjustable restriction device installed in the control circuit tubing. The setting of the needle valve meters the flow into and out of the main valve diaphragm chamber, thus controlling the response speed of the main valve. Depending on the application, the needle valve may be used as a closing speed control, opening speed control, or both simultaneously.

NEEDLE VALVES SHOWN
Sizes: 3/4" & 1/4"

MODEL 141-2 MATRIX

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PART NUMBER</th>
<th>INLET/OUTLET (NPT)</th>
<th>A</th>
<th>USED ON VALVE SIZE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brass</td>
<td>683100</td>
<td>1/4</td>
<td>2</td>
<td>1 1/4/-2"</td>
</tr>
<tr>
<td>Brass</td>
<td>683101</td>
<td>3/8</td>
<td>2 1/4</td>
<td>2 1/2/-6"</td>
</tr>
<tr>
<td>Brass</td>
<td>683102</td>
<td>1/2</td>
<td>2 5/8</td>
<td>6"/-10"</td>
</tr>
<tr>
<td>Brass</td>
<td>683103</td>
<td>3/4</td>
<td>3 1/4</td>
<td>12"/-16"</td>
</tr>
<tr>
<td>Sln. Steel</td>
<td>683700</td>
<td>1/4</td>
<td>2</td>
<td>1 1/4/-2"</td>
</tr>
<tr>
<td>Sln. Steel</td>
<td>683702</td>
<td>3/8</td>
<td>2 1/4</td>
<td>2 1/2/-6"</td>
</tr>
<tr>
<td>Sln. Steel</td>
<td>682704</td>
<td>1/2</td>
<td>2 5/8</td>
<td>8"/-10"</td>
</tr>
<tr>
<td>Sln. Steel</td>
<td>683703</td>
<td>3/4</td>
<td>3 5/8</td>
<td>12"/-16"</td>
</tr>
</tbody>
</table>

Note: Needle valve size may vary on valve application. Consult factory.

SCHEMATIC SYMBOL

The Model 141-2 Needle Valve is shown on OCV Valve Schematics as:

EXAMPLE: Shown here on a MODEL 115-3 DIGITAL VALVE as separate opening and closing speed controls.
DESCRIPTION

The 123 Inline Strainer installs in the inlet side port of the main valve, and protects the pilot system from solid contaminates in the line fluid. The screen prevents the entrance of particles into the pilot system piping while flow through the main valve washes the screen clean. Recommended use on petroleum valve applications where flushing or removal of the screen for cleaning is not practical or may be considered hazardous.

DIMENSIONS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>USED ON VALVE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>660704</td>
<td>3/8</td>
<td>1/4</td>
<td>11/16</td>
<td>2 3/16</td>
<td>1 1/2</td>
<td>1 1/4"-6"</td>
</tr>
<tr>
<td>660705</td>
<td>1/2</td>
<td>3/8</td>
<td>7/8</td>
<td>2 1/4</td>
<td>1 1/2</td>
<td>8"-10"</td>
</tr>
<tr>
<td>660706</td>
<td>3/4</td>
<td>1/2</td>
<td>1 1/8</td>
<td>2 3/8</td>
<td>1 1/2</td>
<td>12"-16"</td>
</tr>
</tbody>
</table>

MATERIALS

Inline strainers are all-stainless steel construction.

SCREEN SIZE

Standard screen is 40 mesh. Other mesh sizes are available.

SCHEMATIC SYMBOL

The Model 123 Inline Strainer is shown on OCV Valve Schematics as:

EXAMPLE: Shown here on a MODEL 115-2 Solenoid Valve.
MODEL 150
LIMIT SWITCH ASSEMBLY