The Model 120-2 has a wide range of applications: anywhere a pressure must be reduced to a manageable level and where the flow rate must be limited. Typical examples include:

- Pump systems
- Zone flow control in municipal and industrial water
- Filter backwash control
- Metering systems

**SERIES FEATURES**

- Reduces a higher inlet pressure to a lower outlet pressure
- Outlet pressure is adjustable with single screw
- Limits flow to a predetermined rate
- Built-in orifice plate for sensing flow rate
- Extra-sensitive differential pilot
- Flow rate is adjustable with single screw
- Adjustable response speed
- Can be maintained without removal from the line
- Factory tested and can be pre-set to your requirements

**OPERATION**

The normally open, spring loaded, pressure reducing pilot, sensing downstream pressure, responds to changes in pressure and causes the main valve to do the same. The net result is a constant modulating action of the pilot and main valve to hold the downstream pressure constant. In addition, a normally open, spring loaded, rate of flow pilot, sensing the differential across the integral orifice plate (located in the valve inlet flange), is installed in series with the reducing pilot. If the differential (hence the flow rate) increases to the set point of this pilot, it will begin to close to throttle the main valve to prevent the flow rate from increasing any further. At that point, downstream pressure will also begin to fall. The pilot system is equipped with a needle valve that fine tunes the valve response to the system variables.

**COMPONENTS**

The Model 120-2 consists of the following components, arranged as shown on the schematic diagram:

1. Model 65 Basic Control Valve
2. Orifice Plate
3. Model 2450 Rate of Flow Control Pilot
4. Model 1340 Pressure Reducing Pilot
5. Model 126 Ejector
6. Model 141-2 Needle Valve
7. Model 159 Y-Strainer
8. Model 141-4 Isolation Ball Valves
9. Model 155 Visual Indicator (Optional)

**MAX. PRESSURE**

The pressures listed here are maximum pressures at 100°F.

<table>
<thead>
<tr>
<th>END CONNECTIONS</th>
<th>DUCTILE IRON</th>
<th>STEEL/STN STL</th>
<th>LOW-LEAD BRONZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>150# Flanged</td>
<td>250 psi</td>
<td>285 psi</td>
<td>225 psi</td>
</tr>
<tr>
<td>300# Flanged</td>
<td>640 psi</td>
<td>740 psi</td>
<td>500 psi</td>
</tr>
</tbody>
</table>

**SIZING**

The following chart states the minimum and maximum flow rate with standard bore orifice plate. This means the valve can be adjusted to control within the ranges shown. Lower flow ranges are possible through the use of smaller orifice plate bores. All ranges are adjustable within a 4:1 ratio (high to low flow). Consult the factory for assistance and a copy of the OCV ValveMaster Sizing program.

<table>
<thead>
<tr>
<th>SIZE</th>
<th>1 1/4&quot;-1 1/2&quot;</th>
<th>2&quot;</th>
<th>2 1/2&quot;</th>
<th>3&quot;</th>
<th>4&quot;</th>
<th>6&quot;</th>
<th>8&quot;</th>
<th>10&quot;</th>
<th>12&quot;</th>
<th>14&quot;</th>
<th>16&quot;</th>
<th>24&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN. FLOW GPM</td>
<td>30</td>
<td>50</td>
<td>70</td>
<td>115</td>
<td>200</td>
<td>450</td>
<td>750</td>
<td>1050</td>
<td>1500</td>
<td>1800</td>
<td>2400</td>
<td>7000</td>
</tr>
<tr>
<td>MAX. FLOW GPM</td>
<td>120</td>
<td>200</td>
<td>280</td>
<td>460</td>
<td>800</td>
<td>1800</td>
<td>3000</td>
<td>4200</td>
<td>6000</td>
<td>7200</td>
<td>9600</td>
<td>28000</td>
</tr>
</tbody>
</table>

TOLL FREE 1.888.628.8258 • phone: (918)627.1942 • fax: (918)622.8916 • 7400 East 42nd Place, Tulsa, Ok 74145

email: sales@controlvalves.com • website: www.controlvalves.com

Global performance. Personal touch.

REVISED 05/03/17
**SIZES**

GLOBE/ANGLE
Flanged Ends - 1 1/4" - 24" (globe);
1 1/4" - 16" (angle)

**FLUID OPERATING TEMPERATURE RANGE**
Valve Elastomers
EPDM 32° F - 230°F*

**SPRING RANGES** (outlet setting)
5-30 psi, 20-80 psi, 20-200 psi, 100-
300 psi

**MATERIALS** - Consult factory for others.

*Body/Bonnet:* Ductile Iron (epoxy coat-
ed), Carbon Steel (epoxy coated),
Stainless Steel, low-lead Bronze, Others
available (consult factory)

*Seal Ring:* low-lead Bronze, Stainless
Steel

*Stem:* Stainless Steel, Monel

*Spring:* Stainless Steel

*Diaphragm:* EPDM*

*Seal Disc:* EPDM*

*Pilot:* low-lead Bronze, Stainless Steel

*Other pilot system components:* low-
lead Bronze/Brass, All Stainless Steel

*Tubing & Fittings:* Copper/Brass,
Stainless Steel

*Others available upon request.

**VALVES 1-1/4" through 24" are**
certified to NSF/ANSI 372. **Valves 4"**
through 24" are also certified to
NSF/ANSI 61-G.

**DESIGN**
The rate of flow/pressure reducing control valve shall function to reduce a higher upstream pressure to a constant, lower downstream pressure while limiting the flow to a predetermined rate.

**SPECIFICATIONS** (Typical Water Application)
The rate of flow/pressure reducing control valve shall be suitable for controlling the downstream pressure to <X> psi, with inlet pressures ranging from <X to X> psi, and limiting the flow rate to <X> gpm.

**ACCEPTABLE PRODUCTS**
The rate of flow/pressure reducing control valve shall be a <size> Model 120-2, <globe pattern, angle pattern>, with <150# flanged, 300# flanged> end connections, as manufactured by OCV Control Valves, Tulsa, Oklahoma, USA.

**OPERATING CONDITIONS**
The rate of flow/pressure reducing control valve shall be a single-seated, line pressure operated, diaphragm actuated, pilot controlled globe valve. The valve shall seal by means of a corrosion-resistant seat and a resilient, rectangular seat disc. These, and other parts, shall be replaceable without removing the valve from the line. The stem of the main valve shall be guided top and bottom by integral bushings. Alignment of the body, bonnet and diaphragm assembly shall be by precision dowel pins. The diaphragm shall not be used as a seating surface, nor shall the pistons be used as an operating means. The orifice plate shall be integrally-installed in the valve inlet flange. The pilot system shall be furnished complete and installed on the main valve. It shall include a needle valve speed control, Y-strainer and isolation ball valves. The rate of flow/pressure reducing control valve shall be operationally and hydrostatically tested prior to shipment.

**MATERIALS OF CONSTRUCTION**
The main valve body and bonnet shall be ductile iron per ASTM A536, Grade 65-45-12. All ferrous surfaces shall be coated with 4 mils of epoxy. The main valve seat ring shall be low-lead Bronze. Elastomers (diaphragms, resilient seats and O-rings) shall be EPDM. Control pilots shall be low-lead Bronze. The opening speed control and isolation ball valves shall be brass, and control line tubing shall be copper. The orifice plate shall be stainless steel.

**OPERATING CONDITIONS**
The rate of flow/pressure reducing control valve shall be suitable for controlling the downstream pressure to <X> psi, with inlet pressures ranging from <X to X> psi, and limiting the flow rate to <X> gpm.

**ACCEPTABLE PRODUCTS**
The rate of flow/pressure reducing control valve shall be a <size> Model 120-2, <globe pattern, angle pattern>, with <150# flanged, 300# flanged> end connections, as manufactured by OCV Control Valves, Tulsa, Oklahoma, USA.

**OPERATING CONDITIONS**
The rate of flow/pressure reducing control valve shall be suitable for controlling the downstream pressure to <X> psi, with inlet pressures ranging from <X to X> psi, and limiting the flow rate to <X> gpm.

**MATERIALS OF CONSTRUCTION**
The main valve body and bonnet shall be ductile iron per ASTM A536, Grade 65-45-12. All ferrous surfaces shall be coated with 4 mils of epoxy. The main valve seat ring shall be low-lead Bronze. Elastomers (diaphragms, resilient seats and O-rings) shall be EPDM. Control pilots shall be low-lead Bronze. The opening speed control and isolation ball valves shall be brass, and control line tubing shall be copper. The orifice plate shall be stainless steel.

**OPERATING CONDITIONS**
The rate of flow/pressure reducing control valve shall be suitable for controlling the downstream pressure to <X> psi, with inlet pressures ranging from <X to X> psi, and limiting the flow rate to <X> gpm.

**MATERIALS OF CONSTRUCTION**
The main valve body and bonnet shall be ductile iron per ASTM A536, Grade 65-45-12. All ferrous surfaces shall be coated with 4 mils of epoxy. The main valve seat ring shall be low-lead Bronze. Elastomers (diaphragms, resilient seats and O-rings) shall be EPDM. Control pilots shall be low-lead Bronze. The opening speed control and isolation ball valves shall be brass, and control line tubing shall be copper. The orifice plate shall be stainless steel.

**OPERATING CONDITIONS**
The rate of flow/pressure reducing control valve shall be suitable for controlling the downstream pressure to <X> psi, with inlet pressures ranging from <X to X> psi, and limiting the flow rate to <X> gpm.

**MATERIALS OF CONSTRUCTION**
The main valve body and bonnet shall be ductile iron per ASTM A536, Grade 65-45-12. All ferrous surfaces shall be coated with 4 mils of epoxy. The main valve seat ring shall be low-lead Bronze. Elastomers (diaphragms, resilient seats and O-rings) shall be EPDM. Control pilots shall be low-lead Bronze. The opening speed control and isolation ball valves shall be brass, and control line tubing shall be copper. The orifice plate shall be stainless steel.

**OPERATING CONDITIONS**
The rate of flow/pressure reducing control valve shall be suitable for controlling the downstream pressure to <X> psi, with inlet pressures ranging from <X to X> psi, and limiting the flow rate to <X> gpm.

**MATERIALS OF CONSTRUCTION**
The main valve body and bonnet shall be ductile iron per ASTM A536, Grade 65-45-12. All ferrous surfaces shall be coated with 4 mils of epoxy. The main valve seat ring shall be low-lead Bronze. Elastomers (diaphragms, resilient seats and O-rings) shall be EPDM. Control pilots shall be low-lead Bronze. The opening speed control and isolation ball valves shall be brass, and control line tubing shall be copper. The orifice plate shall be stainless steel.

**OPERATING CONDITIONS**
The rate of flow/pressure reducing control valve shall be suitable for controlling the downstream pressure to <X> psi, with inlet pressures ranging from <X to X> psi, and limiting the flow rate to <X> gpm.

**MATERIALS OF CONSTRUCTION**
The main valve body and bonnet shall be ductile iron per ASTM A536, Grade 65-45-12. All ferrous surfaces shall be coated with 4 mils of epoxy. The main valve seat ring shall be low-lead Bronze. Elastomers (diaphragms, resilient seats and O-rings) shall be EPDM. Control pilots shall be low-lead Bronze. The opening speed control and isolation ball valves shall be brass, and control line tubing shall be copper. The orifice plate shall be stainless steel.

**OPERATING CONDITIONS**
The rate of flow/pressure reducing control valve shall be suitable for controlling the downstream pressure to <X> psi, with inlet pressures ranging from <X to X> psi, and limiting the flow rate to <X> gpm.

**MATERIALS OF CONSTRUCTION**
The main valve body and bonnet shall be ductile iron per ASTM A536, Grade 65-45-12. All ferrous surfaces shall be coated with 4 mils of epoxy. The main valve seat ring shall be low-lead Bronze. Elastomers (diaphragms, resilient seats and O-rings) shall be EPDM. Control pilots shall be low-lead Bronze. The opening speed control and isolation ball valves shall be brass, and control line tubing shall be copper. The orifice plate shall be stainless steel.

**OPERATING CONDITIONS**
The rate of flow/pressure reducing control valve shall be suitable for controlling the downstream pressure to <X> psi, with inlet pressures ranging from <X to X> psi, and limiting the flow rate to <X> gpm.

**MATERIALS OF CONSTRUCTION**
The main valve body and bonnet shall be ductile iron per ASTM A536, Grade 65-45-12. All ferrous surfaces shall be coated with 4 mils of epoxy. The main valve seat ring shall be low-lead Bronze. Elastomers (diaphragms, resilient seats and O-rings) shall be EPDM. Control pilots shall be low-lead Bronze. The opening speed control and isolation ball valves shall be brass, and control line tubing shall be copper. The orifice plate shall be stainless steel.

**OPERATING CONDITIONS**
The rate of flow/pressure reducing control valve shall be suitable for controlling the downstream pressure to <X> psi, with inlet pressures ranging from <X to X> psi, and limiting the flow rate to <X> gpm.

**MATERIALS OF CONSTRUCTION**
The main valve body and bonnet shall be ductile iron per ASTM A536, Grade 65-45-12. All ferrous surfaces shall be coated with 4 mils of epoxy. The main valve seat ring shall be low-lead Bronze. Elastomers (diaphragms, resilient seats and O-rings) shall be EPDM. Control pilots shall be low-lead Bronze. The opening speed control and isolation ball valves shall be brass, and control line tubing shall be copper. The orifice plate shall be stainless steel.

**OPERATING CONDITIONS**
The rate of flow/pressure reducing control valve shall be suitable for controlling the downstream pressure to <X> psi, with inlet pressures ranging from <X to X> psi, and limiting the flow rate to <X> gpm.