High Level Shut-Off Valves **Fueling** **Aviation Fueling** #### High Level Shut-Off Valve # Description The high level shut-off valve shall be installed on the inlet line to the tank and shall close when the high level is reached. It shall include a chamber mounted float pilot installed on the tank at the desired tank level, and be connected to the main valve by two customerinstalled sense lines. The OCV 8106 is applicable anywhere it is necessary to automatically control the high level in storage tanks with floating pans, requiring that the float control be mounted on the exterior of the tank. - Allows tank filling and shuts off on high level - Remote float chamber mounted on tank exterior wall - Two field-installed lines between valve and float pilot - Manual tester available on float pilot - Can be maintained without removal from the line - Adjustable response speed - Factory tested and can be preset to your requirements ## Certification & Compliance NSF-ISO Quality System (9001) ABS Type Approval Joint Certification Program UFGS-33 52 43.14 Guide Specifications CE (Conformité Européenne) Compliance ### Typical Applications Commercial Airports Military Bases Bulk Fuel Storage Tanks Truck On/Off Loading Fuel Farms Hydrant Systems Mobile Refueling Equipment (Carts/Trucks/Tankers) Refineries The OCV 8101 is designed for tank fill only. A chamber mounted, rotary, float-activated pilot controls the position of the normally closed relay pilot which in turns controls the position of the main valve. With the float in the full down position, the relay pilot is wide open, along with the main valve. When fluid level raises the float to the high level position, flow is blocked, closing the relay pilot and the main valve. # Components The OCV 8106 consists of the following components, arranged as shown on the schematic diagram: - 1 Model 65 Basic Valve (fail closed) - 2 Cage-Mounted Float Pilot - 3 Differential Control Pilot - 4 Ejector - 5 Needle Valve - 6 Inline Strainer - 7 Ball Valve - 8 Visual Indicator ### Pressure Table | End Connections | Ductile Iron | STEEL/SST | STEEL LCB | STEEL WCB | Aluminum | | | | |-----------------------------------------------|-----------------------------------------------|-----------|-----------|-----------|----------|--|--|--| | Standard (Maximum Working Pressures at 100°F) | | | | | | | | | | Screwed | 640 psi | 640 psi | | | 285 psi | | | | | Grooved | 300 psi | 300 psi | | | 200 psi | | | | | 150# Flanged | 250 psi | 285 psi | | | 285 psi | | | | | 300# Flanged | 640 psi | 740 psi | | | | | | | | Metric (Maximum Wo | Metric (Maximum Working Pressures at 37.78°C) | | | | | | | | | Screwed | 44.1 bar | 44.1 bar | 44.1 bar | 44.1 bar | 19.7 bar | | | | | Grooved | 20.7 bar | 20.7 bar | 20.7 bar | 20.7 bar | 13.8 bar | | | | | 150# Flanged | 17.2 bar | 19.0 bar | 18.4 bar | 19.7 bar | 19.7 bar | | | | | 300# Flanged | 44.1 bar | 49.6 bar | 48.0 bar | 51.0 bar | | | | | Based on ANSI flange ratings. | Standard Size<br>Max. Flow (GPM) | 1 1/4" | 1 ½" | 2" | 2 ½" | 3" | 4" | 6" | 8" | 10" | 12" | 14" | 16" | 18" | 20" | 24" | |-------------------------------------|--------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 7.5 FT/SEC<br>(Military) | 40 | 50 | 80 | 120 | 180 | 300 | 680 | 1200 | 1850 | 2650 | 3200 | 4150 | 5250 | 6550 | 9400 | | 15 FT/SEC<br>(Max.<br>Recommended) | 70 | 100 | 160 | 230 | 350 | 600 | 1350 | 2350 | 3700 | 5250 | 6350 | 8300 | 10500 | 13100 | 18800 | | 20 FT/SEC<br>(Max.<br>Continuous) | 100 | 130 | 210 | 300 | 470 | 800 | 1800 | 3150 | 4950 | 7000 | 8450 | 11100 | 14000 | 17400 | 25100 | | Metric Size<br>Max. Flow (m³/hr) | DN32 | DN40 | DN50 | DN65 | DN80 | DN100 | DN150 | DN200 | DN250 | DN300 | DN350 | DN400 | DN450 | DN500 | DN600 | | 2.29 M/SEC<br>(Military) | 9 | 11 | 18 | 27 | 41 | 68 | 154 | 272 | 420 | 602 | 726 | 942 | 1192 | 1487 | 2134 | | 4.57 M/SEC<br>(Max.<br>Recommended) | 16 | 23 | 36 | 52 | 79 | 136 | 306 | 533 | 840 | 1192 | 1441 | 1884 | 2384 | 2974 | 4268 | | 6.10 M/SEC<br>(Max.<br>Continuous) | 23 | 30 | 48 | 68 | 107 | 182 | 409 | 715 | 1124 | 1589 | 1918 | 2520 | 3178 | 3950 | 5698 | The OCV 8106 is normally sized to match the meter size; however, in no case should the maximum velocity exceed 20 ft/sec (metric: 6.10 meters/sec). Resetting, maintenance and periodic testing instructions must be followed as described in detail in the applicable OCV IOM (Installation, Operation & Maintenance) Manual. # Typical Materials | Part | Standard Material | |-------------------------------|-------------------------------------------------------------------------------------| | Body/Bonnet | Ductile Iron (epoxy coated), Carbon Steel (epoxy coated), Stainless Steel, Aluminum | | Seat Ring | Stainless Steel, Bronze | | Stem | Stainless Steel, Monel | | Spring | Stainless Steel | | Diaphragm | Buna-N, Viton (Nylon reinforced) | | Seat Disc | Buna-N, Viton | | Pilot | Stainless Steel, Bronze | | Other Pilot System Components | Stainless Steel, Bronze/Brass | | Tubing & Fittings | Stainless Steel, Copper/Brass | ### General Arrangement & Dimensions | Standar | d Sizes | | | | | | | | | | | | | |---------|-----------|----------------|-------|--------------------------------|--------|---------------------------------|--------------------------------|--------------------------------|---------------------------------|--------|--------|--------------------------------|--------| | DIM | END CONN. | 1 1/4 - 1 1/2" | 2" | 2 1/2" | 3" | 4" | 6" | 8" | 10" | 12" | 14" | 16" | 24" | | | SCREWED | 8 3/4 | 9 7/8 | 10 1/2 | 13 | | | | | | | | | | _ | GROOVED | 8 3/4 | 9 7/8 | 10 1/2 | 13 | 15 <sup>1</sup> / <sub>4</sub> | 20 | | | | | | | | A | 150# FLGD | 8 1/2 | 9 3/8 | 10 1/2 | 12 | 15 | 17 3/4 | 25 3/8 | 29 3/4 | 34 | 39 | 40 3/8 | 62 | | | 300# FLGD | 8 3/4 | 9 7/8 | 11 <sup>1</sup> / <sub>8</sub> | 12 3/4 | 15 5/8 | 18 <sup>5</sup> / <sub>8</sub> | 26 <sup>3</sup> / <sub>8</sub> | 31 1/8 | 35 1/2 | 40 1/2 | 42 | 63 3/4 | | | SCREWED | 43/8 | 4 3/4 | 6 | 6 1/2 | | | | | | | | | | С | GROOVED | 4 3/8* | 4 3/4 | 6 | 6 1/2 | 7 5/8 | | | | | | | | | ANGLE | 150# FLGD | 4 1/4 | 4 3/4 | 6 | 6 | 71/2 | 10 | 12 11/16 | 14 <sup>7</sup> / <sub>8</sub> | 17 | | 20 13/16 | | | | 300# FLGD | 4 3/8 | 5 | 6 3/8 | 6 3/8 | 7 13/16 | 10 1/2 | 13 3/16 | 15 <sup>9</sup> / <sub>16</sub> | 17 3/4 | | 21 5/8 | | | | SCREWED | 3 1/8 | 3 7/8 | 4 | 4 1/2 | | | | | | | | | | D | GROOVED | 31/8 * | 3 7/8 | 4 | 4 1/2 | 5 5/8 | | | | | | | | | ANGLE | 150# FLGD | 3 | 3 7/8 | 4 | 4 | 5 1/2 | 6 | 8 | 11 <sup>3</sup> / <sub>8</sub> | 11 | | 15 11/16 | | | | 300# FLGD | 3 1/8 | 4 1/8 | 4 3/8 | 4 3/8 | 5 <sup>13</sup> / <sub>16</sub> | 61/2 | 8 1/2 | 12 1/16 | 11 3/4 | | 16 <sup>1</sup> / <sub>2</sub> | | | Е | ALL | 6 | 6 | 7 | 6 1/2 | 8 | 10 | 11 <sup>7</sup> /8 | 15 <sup>3</sup> / <sub>8</sub> | 17 | 18 | 19 | 27 | | F (OPT) | ALL | 3 7/8 | 3 7/8 | 3 7/8 | 3 7/8 | 3 7/8 | 3 7/8 | 6 3/8 | 6 <sup>3</sup> / <sub>8</sub> | 6 3/8 | 6 3/8 | 6 <sup>3</sup> / <sub>8</sub> | 8 | | Н | ALL | 10 | 11 | 11 | 11 | 12 | 13 | 14 | 17 | 18 | 20 | 20 | 28 1/2 | | Metric S | iizes | | | | | | | | | | | | | |----------|-----------|---------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------| | DIM | END CONN. | DN32-40 | DN50 | DN65 | DN80 | DN100 | DN150 | DN200 | DN250 | DN300 | DN350 | DN400 | DN600 | | | SCREWED | 222 | 251 | 267 | 330 | | | | | | | | | | _ | GROOVED | 222 | 251 | 267 | 330 | 387 | 508 | | | | | | | | A | 150# FLGD | 216 | 238 | 267 | 305 | 381 | 451 | 645 | 756 | 863 | 991 | 1026 | 1575 | | | 300# FLGD | 222 | 251 | 283 | 324 | 397 | 473 | 670 | 791 | 902 | 1029 | 1067 | 1619 | | | SCREWED | 111 | 121 | 152 | 165 | | | | | | | | | | С | GROOVED | 111* | 121 | 152 | 165 | 194 | | | | | | | | | ANGLE | 150# FLGD | 108 | 121 | 152 | 152 | 191 | 254 | 322 | 378 | 432 | | 529 | | | | 300# FLGD | 111 | 127 | 162 | 162 | 198 | 267 | 335 | 395 | 451 | | 549 | | | | SCREWED | 79 | 98 | 102 | 114 | | | | | | | | | | D | GROOVED | 79* | 98 | 102 | 114 | 143 | | | | | | | | | ANGLE | 150# FLGD | 76 | 98 | 102 | 102 | 140 | 152 | 203 | 289 | 279 | | 398 | | | | 300# FLGD | 79 | 105 | 111 | 111 | 148 | 165 | 216 | 306 | 298 | | 419 | | | Е | ALL | 152 | 152 | 178 | 165 | 203 | 254 | 302 | 391 | 432 | 457 | 483 | 686 | | F (OPT) | ALL | 98 | 98 | 98 | 98 | 98 | 98 | 162 | 162 | 162 | 162 | 162 | 203 | | Н | ALL | 254 | 279 | 279 | 279 | 305 | 330 | 356 | 432 | 457 | 508 | 508 | 724 | <sup>\*</sup>Grooved End not available in 1 1/4" (DN32). # Technical Data High Level Shut-Off Valves | Temperature (Elastomers) | | | | | | | | |---------------------------------------------|-------------------------------------------------|--|--|--|--|--|--| | Buna-N | -40°F to 180°F | | | | | | | | Viton | 20°F to 230°F | | | | | | | | Fluorosilicone | -40°F to 150°F | | | | | | | | EPDM | 0°F to 230°F | | | | | | | | Sizes | | | | | | | | | Screwed Ends | 1-1/4" - 3" | | | | | | | | Grooved Ends | 1-1/2" - 6" (globe & angle) | | | | | | | | Flanged Ends | 1-1/4" - 24" (globe); 1-1/4" - 16" (angle) | | | | | | | | Pressure Rating (ANSI | at 100°F) | | | | | | | | 250psi for Class 150# | 250psi for Class 150# ANSI Flanged Ductile Iron | | | | | | | | 285psi for Steel/Stainless Steel & Aluminum | | | | | | | | | 300# ANSI Flanges ar | 300# ANSI Flanges are available | | | | | | | | Solenoid Voltage | Solenoid Voltage | | | | | | | | Enclosure | Explosion Proof NEMA 4X, 6P, 7, 9 | | | | | | | | Body | Brass, Stainless Steel | | | | | | | | Voltages 24, 120, 240, 480 VAC; 12, 24 VDC | | | | | | | | | Body & Cover Material | |-----------------------------------| | Ductile Iron | | Carbon Steel | | Stainless Steel | | Aluminum | | Trim Material | | Bronze/Brass | | Stainless Steel | | Copper | | Optional Components | | Two-Stage Opening | | Visual Indicator | | Pre-Wired Junction Box | | Items to Specify | | Fluid Type | | Model Number | | Size | | Body & Trim Material | | Solenoid Voltage | | Globe or Angle | | Special Installation Requirements | # Engineering Specifications The high level shut-off valve shall be a single-seated, line pressure operated, diaphragm actuated, pilot controlled globe valve. The valve shall seal by means of a corrosion-resistant seat and a resilient, rectangular seat disc. These, and other parts, shall be replaceable without removing the valve from the line. The stem of the main valve shall be guided top and bottom by integral bushings. Alignment of the body, bonnet and diaphragm assembly shall be by precision dowel pins. The diaphragm shall not be used as a seating surface, nor shall the pistons be used as an operating means. The pilot system shall include a relay pilot, a speed control, an inline strainer and an isolation ball valve. The float pilot chamber shall be furnished separately for remote mounting in the tank. The high level shutoff valve shall be operationally and hydrostatically tested prior to shipment. The main valve body and bonnet shall be ductile iron. All ferrous surfaces shall be coated with 4 mils of epoxy. The main valve seat ring shall be stainless steel. Elastomers (diaphragms, resilient seats and o-rings) shall be Buna-N. The float pilot chamber shall be stainless steel as shall the float pilot, relay pilot, pilot system accessories and control line tubing. The high level shut-off valve shall be suitable on <voltage> (see Technical Data section). The high level shut-off valve shall be suitable for pressures of <X to X> psi (see Pressure Table) at flow rates up to <X> gpm (see Flow Chart). The high level shut-off valve shall be an OCV 8106, as manufactured by OCV, Tulsa, OK, USA. Aquestia Ltd. reserves the right to make product changes without prior notice. To ensure receiving updated information on parts specifications, please contact us at usa@aquestia.com. Aquestia Ltd. shall not be held liable for any errors.