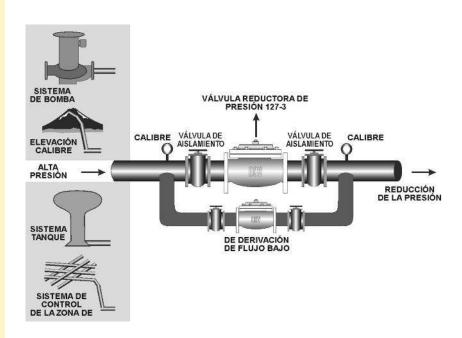




La válvula de reducción de presión de OCV se utiliza en muchas aplicaciones alrededor del mundo. La principal función de la serie 127 es reducir una mayor presión ascendente a una presión descendente menor y más manejable, operando sin importar el suministro ascendente o la demanda descendente.


# **CARACTERÍSTICAS DE LA SERIE**

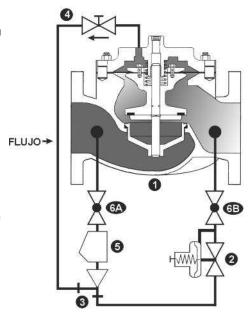
- Reduce la alta presión de entrada a una presión de salida más baja.
- La presión de salida es precisa a lo largo de una amplia gama de flujos.
- La válvula principal operada por un piloto no está sujeta a la caída de presión característica de las válvulas de reducción de presión de acción directa.
- La presión de salida es ajustable en un rango completo de resorte (ver características del piloto)

# **CARACTERÍSTICAS DE LA VÁLVULA**

- ▶ Opera automáticamente presión fuera de línea.
- ► Diafragma de alto rendimiento, con refuerzo de nylon.
- ►El sello del asiento, blando y de forma rectangular, brinda un cerramiento hermético Clase VI.
- ► Ensamble de diafragma guiado arriba y abajo.
- ► Retención de asiento por estrangulamiento brindando estabilidad de flujo y presión.
- ▶ De fácil mantenimiento sin remoción de la línea.
- ► Anillo de asiento reemplazable.
- Los pins de alineación aseguran un ensamblaje adecuado luego del mantenimiento.
- Las válvulas son probadas en fábrica.
- Las válvulas poseen un número de serie y están registradas para facilitar el reemplazo de partes y el soporte técnico de la fábrica

Sin importar la fuente de alta presión, el modelo 127-3 reduce dicha presión a una presión de descarga constante, a pesar de las fluctuaciones de demanda o de presión de entrada. Aquí, se utiliza un arreglo de válvulas paralelo para manejar una amplia gama de demandas. (Consultar Dimensionamiento de Válvulas de Reducción de Presión)

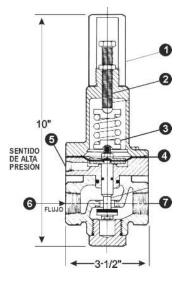



LÍNEA GRATUITA 1.888.628.8258 • teléfono: (918)627.1942 • fax: (918)622.8916 • 7400 E. 42nd Pl., Tulsa, OK 74145 correo electrónico: sales@controlvalves.com • sitio web: www.controlvalves.com



# **FUNCIONAMIENTO DE LA VÁLVULA**

### El Modelo 127-3 de OCV


- Mantiene una presión descendente constante sin importar las fluctuaciones de demanda o presión
- ►Asumiendo que el tamaño y el ajuste han sido calculados correctamente, el modelo 127-3 mantendrá la presión descendenté en él punto de ajuste de ± 2 psi.
- 1) Válvula Básica de Control Modelo 65, una válvula de operación hidráulica y activación por diafragma, esférica o angular, que se cierra con un sello de elastómero sobre metal.
- 2.) Piloto de reducción de presión modelo 1340, un piloto de dos vías, abierto bajo condiciones normales, que detecta la presión descendiente bajo su diafragma y la equilibra contra una carga de resorte ajustable. Un aumento en la presión descendente tiende a causar el cierre del piloto.
- 3) Eyector Modelo 126, una simple conexión en T con un orificio fijo en su puerto ascendente. Brinda la presión adecuada a la cámara del diafragma de la válvula principal dependiendo de la posición del piloto de reducción de presión.
- 4.) Válvula de control de flujo modelo 141-3, una válvula de tipo aguja que brinda un flujo ajustable y restringido en una dirección y flujo libre en la dirección contraria. En el modelo 127-3, la válvula de control de flujo está conectada como un control de velocidad de abertura.
- 5.) Filtro en Y modelo 159, (estándar en válvulas de servicio hidráulico, el filtro protege al sistema piloto contra contaminantes sólidos en el fluido de la línea.
- 6) Dos válvulas de bolas modelo 141-4, (estándar en válvulas de servicio hidráulico, opcionales en válvulas de servicio de combustible), útiles para aislar el sistema piloto para su mantenimiento o la localización de defectos.

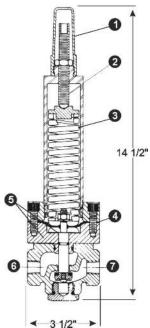


PII NTN 2420

- Detección precisa de presión de salida.
- Ajuste simple e individual.
- ►Asiento de goma-a-metal para un cierre positivo. ► Construcción de bronce y acero inoxidable.
- Todas las partes son reemplazables sin removerlas de la válvula.
- Diafragma de área grande para un estrangulamiento rápido y preciso.
- Indicación visual de la condición del diafragma.

1340




## Materiales del Piloto

Bronce Cantidad de Plomo Acero Inoxidable

Rangos de Resortes

5-30, 20-80, 20-200, 100-300 psi

2420



Materiales del Piloto Acero Inoxidable ASTM A743/CF8M Rangos de Resortes 200-750 psi

El piloto de reducción de presión modelo 1340 y 2420 controla la cantidad de presión en la cámara superior de la válvula principal (y por lo tanto el grado de abertura o cierre de la válvula principal). La presión descendente del sistema es detectada bajo el piloto, este comienza a cerrarse, aumentando la presión en la cámara superior de la válvula principal, provocando su cierre en forma proporcional para mantener una presión de descarga constante. A medida que la presión descendente disminuye, el piloto comienza a abrirse, permitiendo un descenso en la presión de la cámara superior de la válvula principal, haciendo que esta se abra. Esta es una acción de modulación constante que compensa cualquier cambio en la presión descendente del sistema.

### MODELO 1340 / 2420

- Piloto de Reducción de Presión

  1. Cubierta de Tornillo de Ajuste
- Tornillo de Ajuste
- Resorte
- Diafragma
- Detección de Presión
- **Entrada del Piloto**
- Salida del Piloto

LÍNEA GRATUITA 1.888.628.8258 • teléfono: (918)627.1942 • fax: (918)622.8916 • 7400 E. 42nd Pl., Tulsa, OK 74145 correo electrónico: sales@controlyalves.com • sitio web: www.controlyalves.com



# CALIBRADO DE VÁLVULAS DE REDUCCIÓN DE PRESIÓN

Para el más exhaustivo procedimiento de calibrado de válvulas de reducción de presión, es conveniente utilizar nuestro software ValveMaster o los Cuadros de Rendimiento de la Sección de Ingeniería del catálogo de OCV. En caso de no poseerlos, el siguiente procedimiento lo ayudará y le permitirá evitar el error más usual en el calibrado de válvulas de reducción de presión: una válvula demasiado grande.

### Procedimiento

El siguiente procedimiento, ambos factores en cuenta ( tasa de flujo/caída de presión), mediante el uso de un coeficiente de flujo, o Cv. La teoría es simple: Para los mejores resultados, una PRV debe ser dimensionada para operar entre el 10% y el 90% de su capacidad, o en otras palabras, entre 10% y el 90% de su Cv de apertura total. Es un procedimiento de cuatro etapas:

Etapa No. 1: Calcular valor mínimo de Cv

Q Mínimo = flujo anticipado mínimo, GPM S = Gravedad específica del fluido (agua = 1,0) P1 = Presión de entrada a Q mínimo, psi Ps = Presión deseada de salida, psi

$$C_{vmin} = Q_{min} \sqrt{\frac{s}{p_1 - p_s}}$$

Etapa No. 3: En esta tabla, busque el tamaño que incluya el valor mínimo y máximo de Cv que usted haya calculado, ya sea en la columna esférica o angular.

Ocasionalmente, el rango de flujo es tan amplio que tanto el mínimo como el máximo valor de Cv no se acomodarán al rango apropiado de ningún tamaño de válvula. En tal caso, deberá considerar una instalación de válvulas paralela, con una válvula de menor tamaño que se desvíe alrededor de una válvula mayor. Las válvulas deben ser calibradas para que:

Etapa No. 2: Calcular valor máximo de Cv

Q Máximo = flujo anticipado máximo, GPM P1 = Presión de entrada a Q máximo, psi Ps = Presión deseada de salida, psi

$$C_{Vmax} = Q_{max} \sqrt{\frac{s}{p_2 - p_S}}$$

Etapa No. 4:

En la tabla, verifique que la velocidad (GPM) del máximo Q calculado no exceda los 25 pies/seg.



| Tamaño de la Válvula | Rango de Cv de Válvulas Esféricas | Rango de Cv de Válvulas Angulares | Flujo a 25 pies/seg GPM |
|----------------------|-----------------------------------|-----------------------------------|-------------------------|
| 1 1/4-1 1/2          | 2.3-21                            | 3.7-33                            | 115                     |
| 2 "                  | 4.7-42                            | 6.0-54                            | 260                     |
| 2 ½                  | 6.8-61                            | 7.8-70                            | 370                     |
| 3"                   | 9.6-86                            | 14-126                            | 570                     |
| 4"                   | 20-180                            | 27-243                            | 1,000                   |
| 6"                   | 45-405                            | 65-585                            | 2,250                   |
| 8"                   | 76-684                            | 100-900                           | 3,900                   |
| 10"                  | 110-990                           | 150-1350                          | 6,150                   |
| 12"                  | 170-1530                          | 250-2250                          | 8,700                   |
| 14"                  | 215-1940                          |                                   | 10,500                  |
| 16"                  | 285-2570                          | 300-2700                          | 13,800                  |
| 24"                  | 690-6210                          |                                   | 31,300                  |
|                      |                                   |                                   |                         |

### PREOCUPACIONES DE CAVITACIÓN

Por su aplicación, muchas válvulas de reducción de presión están sujetas a diferenciales de presión que pueden llevar a la cavitación. Puede que estas condiciones existan sólo de manera intermitente, causando una mínima preocupación por el deterioro de la válvula.

Los gráficos que solamente detallan las presiones de entrada y salida no pueden predecir con exactitud este fenómeno complejo. La forma más sencilla de predecir la cavitación es dejándonos los cálculos a nosotros.

Simplemente comuníquese por fax, correo electrónico o por teléfono, y podemos suministrarle un análisis gráfico y una solución, a menudo de forma más simple y menos costosa que la clásica: aquella que utiliza dos válvulas en serie.

Envíenos:

1.) TAMAÑO DE LA VÁLVULA

3.) RANGO DE FLUJO - Mínimo - Máximo

2.) PRESIÓN DE ENTRADA - PRESIÓN DE SALIDA

4.) FLUIDO

LÍNEA GRATUITA 1.888.628.8258 • teléfono: (918)627.1942 • fax: (918)622.8916 • 7400 E. 42nd Pl., Tulsa, OK 74145 correo electrónico: sales@controlvalves.com • sitio web: www.controlvalves.com



# **GUÍA DE SELECCIÓN**

Combinando varios pilotos de control, pueden realizarse múltiples funciones con una única Válvula de reducción de presión Serie 127. Para encontrar la válvula de función de combinación, seleccione las características deseadas y luego el número de modelo. Este cuadro representa sólo una muestra de las válvulas más usuales. Consulté en la fábrica acerca de datos específicos del modelo de su elección.

Las válvulas de combinación pueden reducir o eliminar la necesidad de otros equipos. Por ejemplo: Si el sistema requiere una válvula de reducción de presión y una válvula de verificación, puede añadirse la característica de verificación como una función de la válvula de reducción de presión,

|                                                     |   | .s | .3 | . A | ,5  | .1 | .9  | .22 | . 25 | .2 | 13 <sup>2</sup> | . Ar | 4.45 | 08. | , 8° | 245  | 1,280 | 420  | 1,80 | 1580 | 200 | Definición  Reduce la presión alta de                                                          |
|-----------------------------------------------------|---|----|----|-----|-----|----|-----|-----|------|----|-----------------|------|------|-----|------|------|-------|------|------|------|-----|------------------------------------------------------------------------------------------------|
| Característica                                      | K | V. | i, | V X | V X | V. | V X | 1   | V.   | 1  | V.              | V X  | V.   | 1.  | 2 1  | D. Y | 1     | D. Y | V ,  | ar K | ì,  | Definición                                                                                     |
| Reducción de<br>Presión                             | x | x  | x  | x   | x   | x  | X   | x   | x    | x  | x               | x    | x    | x   | x    | x    | x     | x    | x    |      | x   | Reduce la presión alta de<br>entrada a baja presión de<br>salida                               |
| Característica de<br>Verificación                   |   |    | x  |     |     |    |     |     |      |    | x               | x    |      |     | x    |      | x     | x    |      | x    |     | Cierra la válvula ante la presión inversa                                                      |
| Cierre Solenoide                                    |   |    |    |     |     |    |     |     |      |    |                 |      | х    | х   |      | х    |       | x    | x    | x    |     | Abre o cierra la válvula eléctricamente                                                        |
| Mantenimiento de Presión                            | х |    |    |     |     |    | x   | х   | х    |    |                 |      |      |     | x    | x    | х     |      |      | x    |     | Mantiene una presión mínima<br>de entrada en la válvula                                        |
| Control de<br>Sobrecarga                            |   |    |    | х   |     |    |     | х   |      |    |                 | х    |      |     | x    |      |       |      | х    |      |     | La presión de entrada se<br>utiliza para cerrar la válvula al<br>aumentar la presión de salida |
| Característica de<br>Flujo inverso                  |   |    |    |     | x   |    |     |     | х    |    |                 |      |      |     |      |      |       |      |      |      |     | Flujo en cualquier<br>dirección                                                                |
| Reducción<br>Bidireccional                          |   |    |    |     |     |    |     |     |      |    |                 |      |      |     |      |      |       |      |      |      | х   | El sistema de doble piloto<br>controla el flujo en cualquier<br>dirección                      |
| Abertura y/o Cierre<br>de Dos Etapas<br>(Eléctrico) |   |    |    |     |     | x  |     |     |      |    |                 |      |      |     |      |      |       |      |      |      |     | De control solenoide, abre o cierra la válvula en dos etapas                                   |
| Abertura de Dos<br>Etapas<br>(Hidráulica)           |   |    |    |     |     |    | x   |     |      | x  | x               |      |      | x   |      |      |       |      |      |      |     | Los pilotos hidráulicos<br>controlan la abertura de la<br>válvula en dos etapas                |

ALTA PRESIÓN / HP

Cuando la presión de salida de una válvula requiere el piloto de reducción de alta presión modelo 2420, se añade "HP" al final del número del modelo. Por ejemplo: Modelo estándar 127-3 (la salida varía de 5-300 psi) Modelo 127-3HP (la salida varía de 200-750 psi) DESVÍO DE BAJO FLUJO / LF

La mayoría de las válvulas mencionadas en esta guía pueden estar equipadas un regulador de desvío de flujo bajo, un LF se agrega al final del número de modelo. Por ejemplo: Modelo 127-3 con desvío de flujo bajo es 127-3LF. El dimensionamiento de la válvula es un aspecto importante en el uso correcto de esta característica.

ACERCA DE SU VÁLVULA OCV Control Valves fue fundada hace más de 50 años con una visión y un compromiso con la calidad y la confiabilidad. Desde sus modestos comienzos, la compañía ha crecido hasta convertirse

en un líder global tan sólo medio siglo después. De hecho, pueden encontrarse Válvulas OCV de distintas capacidades en casi cualquier país del mundo, desde sistemas de protección contra incendios en Malasia hasta sistemas de combustible de aviación en África y desde refinerías de petróleo en Rusia hasta sistemas de abastecimiento de agua en los Estados Unidos y Canadá. También encontrará nuestras válvulas en sistemas de irrigación en Europa, Sudamérica y el Medio Oriente.

La base original sobre la cual ha sido construida la compañía, permite que nuestro equipo de profesionales no sólo brinde el servicio requerido para ser un proveedor global, sino, más importante aún, la oportunidad de alcanzar ese toque personal que se necesita para ser el mejor socio de cada uno de nuestros clientes. Dicho de manera simple, nos enorgullece lo que hacemos.

Comprometidos con su trabajo, nuestros empleados poseen en promedio más de 15 años de servicio. Esta riqueza de conocimiento nos permite brindar ingeniería de calidad, soporte experto, control exacto y la capacidad para crear válvulas conocidas por su larga vida útil.

El certificado ISO 9001 significa que estamos comprometidos con un programa de control de calidad. Nuestra política es brindar a cada cliente productos de calidad consistente y asegurarnos de que el proceso sea realizado correctamente cada vez. Nuestras válvulas cumplen y exceden los estándares de la industria alrededor del mundo. Incluyendo aprobación por parte de:











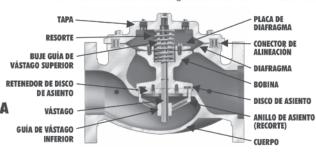


No todas las válvulas se fabrican de igual forma. OCV Control Valves lo demuestra todos los días. Nosotros brindamos respaldo a nuestras válvulas y estamos preparados para cumplir con sus necesidades.

LÍNEA GRATUITA 1.888.628.8258 • teléfono: (918)627.1942 • fax: (918)622.8916 • 7400 E. 42nd Pl., Tulsa, OK 74145 correo electrónico: sales@controlvalves.com • sitio web: www.controlvalves.com



# **ESPECIFICACIONES**




NOTA: Todas las válvulas de abastecimiento de agua cumplen con las leyes de la cantidad de plomo de los Estados Unidos, incluyendo las leyes de cada estado, a partir de marzo de 2014 \* Las válvulas de 1-1/4 "a 24 " están certificadas NSF/ANSI 372. Las válvulas de 4 "a 24 " también están certificados con la norma NSF/ANSI 61-G.

| CUERPO Y TAPA DE LA VÁLVULA                                                                                        | HIERRO                              | DÚCTIL                                        | ACERO F                                         | UNDIDO                                | ACI<br>INOXI | ERO<br>Dable     |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|-------------------------------------------------|---------------------------------------|--------------|------------------|--|--|--|--|--|
| Especificaciones De Material                                                                                       | ASTM A536/<br>(recubierto con l     | (65-45-12<br>mat. epóxico)                    | ASTM A2<br>(recubierto con                      | ?16/WCB<br>ı mat. epóxico)            | Todo         | Grado            |  |  |  |  |  |
| CONEXIONES TERMINALES                                                                                              |                                     |                                               |                                                 |                                       | <u>'</u>     |                  |  |  |  |  |  |
| Estándar De Brida (también disponible en sist. métrico)                                                            | ANSI B                              | 316.42                                        | ANSI                                            | B16.5                                 | ANSI         | B16.5            |  |  |  |  |  |
| Clase De Brida                                                                                                     | 150#                                | 300#                                          | 150#                                            | 300#                                  | 150#         | 300#             |  |  |  |  |  |
| Cara De Brida                                                                                                      | Plana                               | Elevada                                       | Elevada                                         | Elevada                               | Elevada      | Elevada          |  |  |  |  |  |
| Presión Máxima De Trabajo                                                                                          | 250 Psi                             | 640 psi                                       | 285 psi                                         | 740 psi                               | 285 psi      | 740 psi          |  |  |  |  |  |
| Presión De Trabajo Atornillada ANSI B1.20.1 (B                                                                     | 2.1) 640 psi (Bronze 500            | psi) Presión De                               | Trabajo De Extr                                 | emo Ranurado                          | 300 psi      |                  |  |  |  |  |  |
| INTERNAS                                                                                                           |                                     |                                               |                                                 |                                       |              |                  |  |  |  |  |  |
| Vástago                                                                                                            | AC                                  | ERO INOXIDABLE                                |                                                 | MONEL O                               | PCIONAL      |                  |  |  |  |  |  |
| Resorte ACERO INOXIDABLE                                                                                           |                                     |                                               |                                                 |                                       |              |                  |  |  |  |  |  |
| Bobina HIERRO DÚCTIL (recubierto de mat. epóxico) ACERO INOXIDABLE OPCIONAL ACERO INOXIDABLE                       |                                     |                                               |                                                 |                                       |              |                  |  |  |  |  |  |
| Retenedor De Disco De Asiento  ACERO INOXIDABLE (8" y más pequeños opcionales todos los tomaños)  ACERO INOXIDABLE |                                     |                                               |                                                 |                                       |              |                  |  |  |  |  |  |
| Placa De Diafragma                                                                                                 |                                     | IL (recubierto de r                           |                                                 | •                                     | ACERO IN     | OXIDABLE         |  |  |  |  |  |
| Anillo De Asiento (Recorte) BRON                                                                                   | CE CANTIDAD DE PL                   | OMO ACERO                                     | INOXIDABLE OPCIO                                | NAL                                   | ACERO IN     | OXIDABLE         |  |  |  |  |  |
| Buje De Vástago Superior Bronce cantidad de                                                                        | PLOMO VÁLVULA                       | CON ANILLO DE AS                              | IENTO DE ACERO INC                              | XIDABLE-TEFLÓN                        | TEF          | LÓN              |  |  |  |  |  |
| Buje De Vástago Inferior No se aplica a la cantidad                                                                | de plomo anillos de asie            | nto de bronce / teflón                        | para los anillos de asien                       | to de acero inoxidable.               | TEF          | LÓN              |  |  |  |  |  |
| PARTES DE ELASTÓMERO (Goma)                                                                                        |                                     |                                               |                                                 |                                       |              |                  |  |  |  |  |  |
| Diafragma/disco De Asiento/anillos Tóricos                                                                         |                                     | EPDM 3                                        | 2°F to 230°F                                    |                                       |              |                  |  |  |  |  |  |
| Temperatura Operativa*                                                                                             | Consulte<br>subsidios baja o alta t | e a la fábrica cuando<br>emperatura . Otras o | las temperaturas se a<br>opciones de materiales | cercan a los<br>disponibles bajo peti | ción.        |                  |  |  |  |  |  |
| RECUBRIMIENTOS AMPLIA VARIEDAD DE RECUBRIMIENTOS                                                                   |                                     |                                               |                                                 |                                       |              | UCTOS REFINADOS. |  |  |  |  |  |
| SOLENOIDES - ELÉCTRICOS                                                                                            |                                     |                                               |                                                 |                                       |              |                  |  |  |  |  |  |
| Cuerpos                                                                                                            | LATÓN                               |                                               | ACERO INOXIDA                                   | BLE (OPCIONAL)                        |              |                  |  |  |  |  |  |
| Elastómeros ESTÁNDAR                                                                                               | - REFORZADO NYL                     | ON BUNA-N                                     | VITON® (                                        | OPCIONAL                              |              |                  |  |  |  |  |  |
| Carcasas Herméticas, N                                                                                             | EMA 1, 3, 4, y 4X -                 | RESISTENTES A E                               | XPLOSIÓN - OPCIO                                | NAL (NEMA 7 y 9)                      |              |                  |  |  |  |  |  |
| Alimentación AC, 60HZ - 24,                                                                                        | 120, 240, 480 VOLTI                 | OS AC, 50 HZ - IN                             | I 110 VOLTIOS MÚL                               | TIPLES DC, 6, 12,                     | 24, 240 VO   | LTIOS            |  |  |  |  |  |
| Operación energizar para abi                                                                                       | RIR (NORMALMENT                     | E CERRADA)                                    | DES-ENERGIZAR PA                                | RA ABRIR (NORM                        | ALMENTE A    | ABIERTA)         |  |  |  |  |  |

| PILOTOS DE  | CONTROL                  |                  |
|-------------|--------------------------|------------------|
| Cuerpos     | BRONCE CANTIDAD DE PLOMO | ACERO INOXIDABLE |
| Internos    |                          |                  |
| CIRCUITOS I | DE CONTROL               |                  |
| Tubería     | COBRE                    | ACERO INOXIDABLE |
| Accesorios  |                          | ACERO INOXIDABLE |

VITON® es una marca comercial registrada de DuPont Dow Elastomers.



### MATERIALES DE VALVULAS DE SERVICIO DE AGUA SALADA Recubrimientos Especiales De Acero Fundido -- Bronce Aluminio Ni Astm B148 --Acero Inoxidable Super Duplex



### Medidas De Válvula Globo Bridada

| 1.25" | 1.5" | 2"   | 2.5" | 3"   | 4"    | 6"    | 8"    | 10"   | 12"   | 14"   | 16"   | 18"*    | 20"*      | 24"    |
|-------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|---------|-----------|--------|
| 32mm  | 40mm | 50mm | 65mm | 80mm | 100mm | 150mm | 200mm | 250mm | 300mm | 350mm | 400mm | 450mm*  | 500mm*    | 600mm  |
|       |      |      |      |      |       |       |       |       |       |       | *(    | CONSULT | TE A LA F | ÁBRICA |



### Medidas De Válvula Angular Bridada

| 1.25" | 1.5" | 2"   | 2.5" | 3"   | 4"    | 6"    | 8"    | 10"   | 12"   | 16"   |
|-------|------|------|------|------|-------|-------|-------|-------|-------|-------|
| 32mm  | 40mm | 50mm | 65mm | 80mm | 100mm | 150mm | 200mm | 250mm | 300mm | 400mm |



### Medidas De Globo/Angular Atornilladas

| 1.25" | 1.5" | 2"   | 2.5" | 3"   |
|-------|------|------|------|------|
| 32mm  | 40mm | 50mm | 65mm | 80mm |



### Medidas De Globo/angular Ranurada

| 1.5" | 2"   | 2.5" | 3"   | 4"    |
|------|------|------|------|-------|
| 32mm | 50mm | 65mm | 80mm | 100mm |

LÍNEA GRATUITA 1.888.628.8258 • teléfono: (918)627.1942 • fax: (918)622.8916 • 7400 E. 42nd Pl., Tulsa, OK 74145 correo electrónico: sales@controlvalves.com • sitio web: www.controlvalves.com



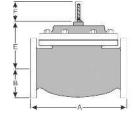
# **DIMENSIONES**

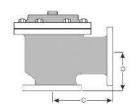
| DIMENSIONES | FUA . | PULC | SADAS |
|-------------|-------|------|-------|

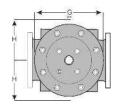
| DIM    | CONEX. TERM. | 1 1/4-1 1/2  | 2       | 2 1/2   | 3      | 4       | 6      | 8        | 10      | 12     | 14     | 16       | 24     |
|--------|--------------|--------------|---------|---------|--------|---------|--------|----------|---------|--------|--------|----------|--------|
|        | ATORNILLADA  | 8 3/4        | 9 7/8   | 10 1/2  | 13     |         |        |          | 16      | **     |        | **       | **     |
| Α      | RANURADA     | 8 3/4        | 9 7/8   | 10 1/2  | 13     | 15 1/4  | 20     |          | 5200    |        |        | _ =      |        |
|        | 150# BRIDADA | 8 1/2        | 9 3/8   | 10 1/2  | 12     | 15      | 17 3/4 | 25 3/8   | 29 3/4  | 34     | 39     | 40 3/8   | 62     |
|        | 300# BRIDADA | 8 3/4        | 9 7/8   | 11 1/8  | 12 3/4 | 15 5/8  | 18 5/8 | 26 3/8   | 31 1/8  | 35 1/2 | 40 1/2 | -        | 63 3/4 |
|        | ATORNILLADA  | 1 7/16       | 1 11/16 | 1 7/8   | 2 1/4  | -       |        |          | -       |        |        |          | **     |
| В      | RANURADA     | 1*           | 1 3/16  | 1 7/16  | 1 3/4  | 2 1/4   | 3 5/16 |          | -       |        |        | -        | **     |
|        | 150# BRIDADA | 2 5/16-2 1/2 | 3       | 3 1/2   | 3 3/4  | 4 1/2   | 5 1/2  | 6 3/4    | 8       | 9 1/2  | 10 5/8 | 11 3/4   | 16     |
|        | 300# BRIDADA | 2 5/8-3 1/16 | 3 1/4   | 3 3/4   | 4 1/8  | 5       | 6 1/4  | 7 1/2    | 8 3/4   | 10 1/4 | 11 1/2 | 12 3/4   | 18     |
|        | ATORNILLADA  | 4 3/8        | 4 3/4   | 6       | 6 1/2  | -       | -      | -        | -       | -      | -      | _        |        |
| С      | RANURADA     | 4 3/8*       | 4 3/4   | 6       | 6 1/2  | 7 5/8   |        | ***      |         |        |        |          |        |
| ÁNGULO | 150# BRIDADA | 4 1/4        | 4 3/4   | 6       | 6      | 7 1/2   | 10     | 12 11/16 | 14 7/8  | 17     | 77     | 20 13/16 | ***    |
|        | 300# BRIDADA | 4 3/8        | 5       | 6 3/8   | 6 3/8  | 7 13/16 | 10 1/2 | 13 3/16  | 15 9/16 | 17 3/4 |        | 21 5/8   |        |
|        | ATORNILLADA  | 3 1/8        | 3 7/8   | 4       | 4 1/2  | -       |        |          | -       |        |        | _        | ***    |
| D      | RANURADA     | 3 1/8*       | 3 7/8   | 4       | 4 1/2  | 5 5/8   |        |          | -       | -      |        | 0.72     |        |
| ÁNGULO | 150# BRIDADA | 3            | 3 7/8   | 4       | 4      | 5 1/2   | 6      | 8        | 11 3/8  | 11     |        | 15 11/16 | **     |
|        | 300# BRIDADA | 3 1/8        | 4 1/8   | 4 3/8   | 4 3/8  | 5 13/16 | 6 1/2  | 8 1/2    | 12 1/16 | 11 3/4 | ***    | 16 1/2   | -      |
| E      | TODAS        | 6            | 6       | 7       | 6 1/2  | 8       | 10     | 11 7/8   | 15 3/8  | 17     | 18     | 19       | 27     |
| F      | TODAS        | 3 7/8        | 3 7/8   | 3 7/8   | 3 7/8  | 3 7/8   | 3 7/8  | 6 3/8    | 6 3/8   | 6 3/8  | 6 3/8  | 6 3/8    | 8      |
| G      | TODAS        | 6            | 6 3/4   | 7 11/16 | 8 3/4  | 11 3/4  | 14     | 21       | 24 1/2  | 28     | 31 1/4 | 34 1/2   | 52     |
| Н      | TODAS        | 10           | 11      | 11      | 11     | 12      | 13     | 14       | 17      | 18     | 20     | 20       | 28 1/2 |

<sup>\*</sup>EXTREMO RANURADO NO DISPONIBLE EN 1 1/4"

### DIMENSIONES SIST. MÉTRICO


| DIM        | CONEX. TERM. | DN32-DN40 | DN50 | DN65 | DN80 | DN100 | DN150 | DN200 | DN250 | DN300 | DN350 | DN400 | DN600 |
|------------|--------------|-----------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|
|            | ATORNILLADA  | 222       | 251  | 267  | 330  | -     |       |       | -     |       |       |       |       |
| Α          | RANURADA     | 222       | 251  | 267  | 330  | 387   | 508   | **    | -     | -     |       |       | -     |
|            | 150# BRIDADA | 216       | 238  | 267  | 305  | 381   | 451   | 645   | 756   | 864   | 991   | 1026  | 1575  |
|            | 300# BRIDADA | 222       | 251  | 283  | 324  | 397   | 473   | 670   | 791   | 902   | 1029  | -     | 1619  |
|            | ATORNILLADA  | 37        | 43   | 48   | 57   |       |       |       | -     |       |       |       |       |
| В          | RANURADA     | 25*       | 30   | 37   | 44   | 57    | 84    |       | _     |       |       | -     | -     |
|            | 150# BRIDADA | 59-64     | 76   | 89   | 95   | 114   | 140   | 171   | 203   | 241   | 270   | 298   | 406   |
|            | 300# BRIDADA | 67-78     | 83   | 95   | 105  | 127   | 159   | 191   | 222   | 260   | 292   | 324   | 457   |
|            | ATORNILLADA  | 111       | 121  | 152  | 165  | -     |       |       | -     |       |       |       |       |
| С          | RANURADA     | 111*      | 121  | 152  | 165  | 194   |       |       | -     |       |       | **    | -     |
| ÁNGULO     | 150# BRIDADA | 108       | 121  | 152  | 152  | 191   | 254   | 322   | 378   | 432   |       | 529   | -     |
| Marketers. | 300# BRIDADA | 111       | 127  | 162  | 162  | 198   | 267   | 335   | 395   | 451   |       | 549   |       |
|            | ATORNILLADA  | 79        | 98   | 102  | 114  | -     |       | -     | -     | -     | 77    | -     | +     |
| D          | RANURADA     | 79*       | 98   | 102  | 114  | 143   | **    |       | -     | -     | ***   |       |       |
| ÁNGULO     | 150# BRIDADA | 76        | 98   | 102  | 102  | 140   | 152   | 203   | 289   | 279   |       | 398   |       |
|            | 300# BRIDADA | 79        | 105  | 111  | 111  | 148   | 165   | 216   | 306   | 298   |       | 419   |       |
| E          | TODAS        | 152       | 152  | 178  | 165  | 203   | 254   | 302   | 391   | 432   | 457   | 483   | 686   |
| F          | TODAS        | 98        | 98   | 98   | 98   | 98    | 98    | 162   | 162   | 162   | 162   | 162   | 203   |
| G          | TODAS        | 152       | 171  | 195  | 222  | 298   | 356   | 533   | 622   | 711   | 794   | 876   | 1321  |
| Н          | TODAS        | 254       | 279  | 279  | 279  | 305   | 330   | 356   | 432   | 457   | 508   | 508   | 724   |


<sup>\*</sup>EXTREMO RANURADO NO DISPONIBLE EN DN32


Para una máxima eficiencia, la válvula de control OCV debe ser montada en un sistema de tuberías de manera tal que la tapa (cubierta) de la válvula se encuentre en la posición superior. Otras posiciones son aceptables, pero puede que no permitan el máximo y más seguro funcionamiento de la válvula. En particular, por favor consulte con la fábrica antes de instalar válvulas de 8 pulgadas o mayores, o cualquier válvula con un interruptor de límite, en posiciones diferentes a las descritas. Debe tener en cuenta el espacio al instalar válvulas y sus sistemas pilotos.

Es necesario que un técnico calificado establezca y lleve a cabo un programa de mantenimiento e inspección de rutina una vez al año. Consulte con nuestra fábrica al 1-888-628-8258 para información sobre partes y servicios.

Cómo ordenar su válvula Al realizar su orden, por favor indique: Número de serie - Tamaño de válvula - Esférica o Angular -Tipo de presión - Roscada, Bridada, Acanalada - Material de los bordes - Rango de ajuste - Opciones de piloto - Necesidades especiales / o requisitos de instalación.







Representado por:

LÍNEA GRATUITA 1.888.628.8258 • teléfono: (918)627.1942 • fax: (918)622.8916 • 7400 E. 42nd Pl., Tulsa, OK 74145 correo electrónico: sales@controlvalves.com • sitio web: www.controlvalves.com