Fueling Aviation **Fueling** #### **Hydrant Control Valve** The hydrant control valve shall function to reduce a higher upstream pressure to a constant, lower downstream pressure regardless of fluctuations in supply or demand. The valve shall be equipped with a two-way hydraulic valve that will allow the valve to open when pressurized, and is also equipped with a high capacity surge control pilot to close the valve quickly in the event of sudden reduction in flow. It shall also be equipped with a rate of flow control pilot that will automatically limit the maximum flow rate. Sensing of the pilot shall be by means of a calibrated orifice plate integrally installed in the upstream valve flange. The valve will open automatically in the event of pressure reversal. The OCV 114-2 is a control valve specifically designed for aircraft refueling service. Known as either a refueling or a hydrant control valve, it is the typical control valve used on pantograph refueling systems. It performs the following - Opens and closes electrically via hydraulic deadman control - While open, modulates to control downstream pressure at a predetermined set point - Closes rapidly to prevent undue pressure buildup due to a rapid reduction in demand - Limits flow rate to a predetermined maximum #### Features & Benefits - Hydraulic deadman control - Pressure reducing pilot senses valve outlet or pressure compensating venturi - High-capacity surge control minimizes pressure buildup on reduction of flow - Rate of flow pilot limits maximum flow ## Typical Applications Commercial Airports Military Bases Bulk Fuel Storage Tanks Truck On/Off Loading ### Certification & Compliance NSF-ISO Quality System (9001) ABS Type Approval Joint Certification Program UFGS-33 52 43.14 Guide Specifications CE (Conformité Européenne) Compliance - Opening speed control - Automatically opens for downstream thermal relief or defueling Equipped with visual indicator to monitor valve position - Can be maintained without removal from the line - Factory tested and can be preset to your requirements Fuel Farms Hydrant Systems Mobile Refueling Equipment (Carts/Trucks/Tankers) Refineries # Aquestia Directing the Flow Hydrant & Pantograph Control Valves The two-way, normally closed deadman pilot closes the main valve when actuating hydraulic pressure is removed. Applying hydraulic pressure to the deadman control opens the valve and allows it to come under control of the pressure reducing pilot. The reducing pilot responds to changes in pressure and causes the main valve to do the same. The net result is a constant modulating action of the pilot and main valve to hold the downstream pressure constant. The pilot system is equipped with an opening speed control. In the event of a sudden decrease in flow, downstream pressure will increase. The normally closed surge control pilot responds to the pressure increase by opening, causing the main valve to move further closed at a much faster rate than would be accomplished through the normal control circuit. As a result, pressure buildup is minimized. Sensing the differential across the integral orifice plate, the rate of flow pilot will automatically throttle the valve to prevent the flow rate from exceeding a predetermined maximum. In the event downstream pressure becomes higher than upstream pressure the valve will automatically open to provide thermal pressure relief or defueling flow. ### Co #### Components The OCV 114-2 consists of the following components, arranged as shown on the schematic diagram: - 1 Model 65 Basic Control Valve (fail closed) - 2 Orifice Plate - 3 Model 2540 Rate of Flow Control Pilot - 4 Model 1340 Pressure Reducing Pilot - 5 Model 2430 Deadman Control Pilot - 6 Model 1330 or 2470 Surge Control Pilot - 7 Model 126 Ejector - 8 Model 141-3 Flow Control Valve (opening speed control) - 9 Model 141-1 Check Valve (thermal relief) - 10 Model 123 Inline Strainer - 11 Model 155 Visual Indicator #### Pressure Table | End Connections | Ductile Iron | STEEL/SST | STEEL LCB | STEEL WCB | Aluminum | | | | |---|------------------|-------------|-----------|-----------|----------|--|--|--| | End Connections | Ductile Iron | 31EEL/331 | STEEL LCB | STEEL WCB | Aluminum | | | | | Standard (Maximum Working Pressures at 100°F) | | | | | | | | | | Screwed | 640 psi | 640 psi | | | 285 psi | | | | | Grooved | 300 psi | 300 psi | | | 200 psi | | | | | 150# Flanged | 250 psi | 285 psi | | | 285 psi | | | | | 300# Flanged | 640 psi | 740 psi | | | | | | | | Metric (Maximum Wo | orking Pressures | at 37.78°C) | | | | | | | | Screwed | 44.1 bar | 44.1 bar | 44.1 bar | 44.1 bar | 19.7 bar | | | | | Grooved | 20.7 bar | 20.7 bar | 20.7 bar | 20.7 bar | 13.8 bar | | | | | 150# Flanged | 17.2 bar | 19.0 bar | 18.4 bar | 19.7 bar | 19.7 bar | | | | | 300# Flanged | 44.1 bar | 49.6 bar | 48.0 bar | 51.0 bar | | | | | | Standard Size
Max. Flow (GPM) | 1 1/4" | 1 ½" | 2" | 2 ½" | 3" | 4" | 6" | 8" | 10" | 12" | 14" | 16" | 18" | 20" | 24" | |-------------------------------------|--------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 7.5 FT/SEC
(Military) | 40 | 50 | 80 | 120 | 180 | 300 | 680 | 1200 | 1850 | 2650 | 3200 | 4150 | 5250 | 6550 | 9400 | | 15 FT/SEC
(Max.
Recommended) | 70 | 100 | 160 | 230 | 350 | 600 | 1350 | 2350 | 3700 | 5250 | 6350 | 8300 | 10500 | 13100 | 18800 | | 20 FT/SEC
(Max.
Continuous) | 100 | 130 | 210 | 300 | 470 | 800 | 1800 | 3150 | 4950 | 7000 | 8450 | 11100 | 14000 | 17400 | 25100 | | Metric Size
Max. Flow (m³/hr) | DN32 | DN40 | DN50 | DN65 | DN80 | DN100 | DN150 | DN200 | DN250 | DN300 | DN350 | DN400 | DN450 | DN500 | DN600 | | 2.29 M/SEC
(Military) | 9 | 11 | 18 | 27 | 41 | 68 | 154 | 272 | 420 | 602 | 726 | 942 | 1192 | 1487 | 2134 | | 4.57 M/SEC
(Max.
Recommended) | 16 | 23 | 36 | 52 | 79 | 136 | 306 | 533 | 840 | 1192 | 1441 | 1884 | 2384 | 2974 | 4268 | | 6.10 M/SEC
(Max.
Continuous) | 23 | 30 | 48 | 68 | 107 | 182 | 409 | 715 | 1124 | 1589 | 1918 | 2520 | 3178 | 3950 | 5698 | The OCV 114-2 is normally sized to match the meter size; however, in no case should the maximum velocity exceed 20 ft/sec (metric: 6.10 meters/sec). Resetting, maintenance and periodic testing instructions must be followed as described in detail in the applicable OCV IOM (Installation, Operation & Maintenance) Manual. ### Typical Materials | Part | Standard Material | |-------------------------------|---| | Body/Bonnet | Ductile Iron (epoxy coated), Carbon Steel (epoxy coated), Stainless Steel, Aluminum | | Seat Ring | Stainless Steel, Bronze | | Stem | Stainless Steel, Monel | | Spring | Stainless Steel | | Diaphragm | Buna-N, Viton (Nylon reinforced) | | Seat Disc | Buna-N, Viton | | Pilot | Stainless Steel, Bronze | | Other Pilot System Components | Stainless Steel, Bronze/Brass | | Tubing & Fittings | Stainless Steel, Copper/Brass | ### General Arrangement & Dimensions | Standard | d Sizes | | | | | | | | | | | | | |----------|-----------|----------------|-------|--------------------------------|--------|---------------------------------|--------------------------------|--------------------------------|---------------------------------|-------------------------------|--------|--------------------------------|--------| | DIM | END CONN. | 1 1/4 - 1 1/2" | 2" | 2 1/2" | 3" | 4" | 6" | 8" | 10" | 12" | 14" | 16" | 24" | | | SCREWED | 8 3/4 | 9 7/8 | 10 1/2 | 13 | | | | | | | | | | A | GROOVED | 8 3/4 | 9 7/8 | 10 1/2 | 13 | 15 ¹ / ₄ | 20 | | | | | | | | A | 150# FLGD | 8 1/2 | 9 3/8 | 10 1/2 | 12 | 15 | 17 ³ / ₄ | 25 ³ / ₈ | 29 3/4 | 34 | 39 | 40 3/8 | 62 | | | 300# FLGD | 8 3/4 | 9 7/8 | 11 ¹ / ₈ | 12 3/4 | 15 5/8 | 18 5/8 | 26 ³ / ₈ | 31 1/8 | 35 1/2 | 40 1/2 | 42 | 63 3/4 | | | SCREWED | 43/8 | 4 3/4 | 6 | 6 1/2 | | | | | | | | | | С | GROOVED | 4 3/8* | 4 3/4 | 6 | 6 1/2 | 7 5/8 | | | | | | | | | ANGLE | 150# FLGD | 4 1/4 | 4 3/4 | 6 | 6 | 71/2 | 10 | 12 11/16 | 14 ⁷ / ₈ | 17 | | 20 13/16 | | | | 300# FLGD | 4 3/8 | 5 | 63/8 | 6 3/8 | 7 13/16 | 10 1/2 | 13 3/16 | 15 ⁹ / ₁₆ | 17 3/4 | | 21 5/8 | | | | SCREWED | 3 1/8 | 3 7/8 | 4 | 4 1/2 | | | | | | | | | | D | GROOVED | 31/8 * | 3 7/8 | 4 | 4 1/2 | 5 5/8 | | | | | | | | | ANGLE | 150# FLGD | 3 | 3 7/8 | 4 | 4 | 5 1/2 | 6 | 8 | 11 ³ / ₈ | 11 | | 15 11/16 | | | | 300# FLGD | 3 1/8 | 4 1/8 | 4 3/8 | 4 3/8 | 5 ¹³ / ₁₆ | 6 1/2 | 8 1/2 | 12 1/16 | 11 3/4 | | 16 ¹ / ₂ | | | Е | ALL | 6 | 6 | 7 | 6 1/2 | 8 | 10 | 11 ⁷ /8 | 15 ³ / ₈ | 17 | 18 | 19 | 27 | | F (OPT) | ALL | 3 7/8 | 3 7/8 | 3 7/8 | 3 7/8 | 3 7/8 | 3 7/8 | 6 3/8 | 6 ³ / ₈ | 6 ³ / ₈ | 6 3/8 | 6 ³ / ₈ | 8 | | Н | ALL | 10 | 11 | 11 | 11 | 12 | 13 | 14 | 17 | 18 | 20 | 20 | 28 1/2 | | Metric S | iizes | | | | | | | | | | | | | |----------|-----------|---------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------| | DIM | END CONN. | DN32-40 | DN50 | DN65 | DN80 | DN100 | DN150 | DN200 | DN250 | DN300 | DN350 | DN400 | DN600 | | | SCREWED | 222 | 251 | 267 | 330 | | | | | | | | | | A | GROOVED | 222 | 251 | 267 | 330 | 387 | 508 | | | | | | | | A | 150# FLGD | 216 | 238 | 267 | 305 | 381 | 451 | 645 | 756 | 863 | 991 | 1026 | 1575 | | | 300# FLGD | 222 | 251 | 283 | 324 | 397 | 473 | 670 | 791 | 902 | 1029 | 1067 | 1619 | | | SCREWED | 111 | 121 | 152 | 165 | | | | | | | | | | С | GROOVED | 111* | 121 | 152 | 165 | 194 | | | | | | | | | ANGLE | 150# FLGD | 108 | 121 | 152 | 152 | 191 | 254 | 322 | 378 | 432 | | 529 | | | | 300# FLGD | 111 | 127 | 162 | 162 | 198 | 267 | 335 | 395 | 451 | | 549 | | | | SCREWED | 79 | 98 | 102 | 114 | | | | | | | | | | D | GROOVED | 79* | 98 | 102 | 114 | 143 | | | | | | | | | ANGLE | 150# FLGD | 76 | 98 | 102 | 102 | 140 | 152 | 203 | 289 | 279 | | 398 | | | | 300# FLGD | 79 | 105 | 111 | 111 | 148 | 165 | 216 | 306 | 298 | | 419 | | | Е | ALL | 152 | 152 | 178 | 165 | 203 | 254 | 302 | 391 | 432 | 457 | 483 | 686 | | F (OPT) | ALL | 98 | 98 | 98 | 98 | 98 | 98 | 162 | 162 | 162 | 162 | 162 | 203 | | Н | ALL | 254 | 279 | 279 | 279 | 305 | 330 | 356 | 432 | 457 | 508 | 508 | 724 | ^{*}Grooved End not available in 11/4" (DN32). ### Technical Data | Temperature (Elastomers) | | | | | | | | |---|--|--|--|--|--|--|--| | Buna-N | -40°F to 180°F | | | | | | | | Viton | 20°F to 230°F | | | | | | | | Fluorosilicone | -40°F to 150°F | | | | | | | | EPDM | 0°F to 230°F | | | | | | | | Sizes | | | | | | | | | Screwed Ends | 1-1/4" - 3" | | | | | | | | Grooved Ends | 1-1/2" - 6" (globe & angle) | | | | | | | | Flanged Ends | 1-1/4" - 24" (globe); 1-1/4" - 16" (angle) | | | | | | | | Pressure Rating (ANSI | at 100°F) | | | | | | | | 250psi for Class 150# ANSI Flanged Ductile Iron | | | | | | | | | 285psi for Steel/Stainless Steel & Aluminum | | | | | | | | | 300# ANSI Flanges a | 300# ANSI Flanges are available | | | | | | | | Solenoid Voltage | | | | | | | | | Enclosure | Explosion Proof NEMA 4X, 6P, 7, 9 | | | | | | | | Body | Brass, Stainless Steel | | | | | | | | Voltages 24, 120, 240, 480 VAC; 12, 24 VDC | | | | | | | | | Body & Cover Material | |-----------------------------------| | Ductile Iron | | Carbon Steel | | Stainless Steel | | Aluminum | | Trim Material | | Bronze/Brass | | Stainless Steel | | Copper | | Optional Components | | Two-Stage Opening | | Visual Indicator | | Pre-Wired Junction Box | | Items to Specify | | Fluid Type | | Model Number | | Size | | Body & Trim Material | | Solenoid Voltage | | Globe or Angle | | Special Installation Requirements | # Engineering Specifications The hydrant control valve shall be a single-seated, line pressure operated, diaphragm actuated, pilot controlled valve. The valve shall seal by means of a corrosion-resistant seat and a resilient, rectangular seat disc. These, and other parts, shall be replaceable without removing the valve from the line. The stem of the main valve shall be guided top and bottom by integral bushings. Alignment of the body, bonnet and diaphragm assembly shall be by precision dowel pins. The diaphragm shall not be used as a seating surface, nor shall the pistons be used as an operating means. The pilot system shall be furnished complete and installed on the main valve. It shall include an opening speed control, an inline strainer, pilot check valves, a valve position indicator, and a hydraulic deadman valve. The hydrant control valve shall be operationally and hydrostatically tested prior to shipment. The main valve body and bonnet shall be ductile iron. All ferrous surfaces shall be coated with 4 mils of epoxy. The main valve seat ring shall be stainless steel. Elastomers (diaphragms, resilient seats and o-rings) shall be Buna-N. The control pilots, deadman valve control, opening speed control, check valves, control line tubing, and fittings shall be stainless steel. The hydrant control valve shall be suitable on <voltage> (see Technical Data section). The hydrant control valve shall be suitable for pressures of <X to X> psi (see Pressure Table) at flow rates up to <X> gpm (see Flow Chart). The hydrant control valve shall be an OCV 114-2, as manufactured by OCV, Tulsa, OK, USA. Aquestia Ltd. reserves the right to make product changes without prior notice. To ensure receiving updated information on parts specifications, please contact us at usa@aquestia.com. Aquestia Ltd. shall not be held liable for any errors.