

OCV TRUCK/RAIL CAR LOADING & UNLOADING SYSTEMS Model 127-9S

OCV 127-9S

Two-Stage Preset Valve

The two-stage preset valve shall open in one stage and close in two stages based on signals from the preset register. The OCV 127-9S is specifically designed for fuel loading systems and performs the following functions:

- Electrical opening full flow delivery
- Pressure Reducing valve will control downstream (delivery) pressure at a predetermined point during high flow filling process
- Two-Stage shutdown

FEATURES & BENEFITS

- Opens on signal from preset register
- Can be controlled by mechanical or electronic presets
- Adjustable flow setting for 2nd stage dwell
- Factory tested
- Junction box options are available, with explosion proof ratings

CERTIFICATION & COMPLIANCE

- NSF-ISO Quality System (9001)
- Technical Standards & Safety Authority
- ABS Type Approval
- American-Made: American Recovery & Reinvestment
- Pressure Equipment Directive Certified 97/23/EC
- CE (Conformité Européenne) Compliance
- Two-stage electronic opening options are available
- Standard Class 1 Div 1 (Optional Class I Div 2, ATEX, IECEX)

TYPICAL APPLICATIONS

Metering Systems

Loading Terminals

Storage Tanks

Truck/Rail Car Loading & Unloading Systems

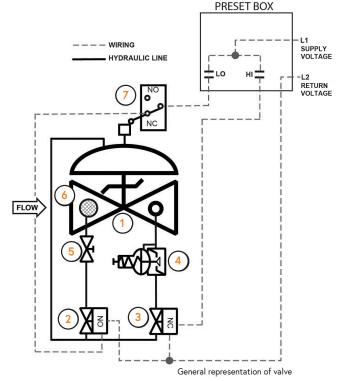
TRUCK/RAIL CAR LOADING & UNLOADING SYSTEMS

Model 127-9S

OPERATION

The OCV 127-9S control valve opens to fill the system at a high flow rate while maintaining a constant downstream pressure. Near the end of the load, the valve rapidly closes down in 2 stages to top off the reservoir:

Opening, Full Flow: The main valve (1) opens to supply a constant pressure when the preset controller energizes the solenoid (2). The pressure reducing pilot (4), sensing downstream pressure, will modulate the main valve to prevent the downstream pressure from exceeding the predetermined maximum. The needle valve (5) is adjusted for optimum performance of the pilot (4).


 HI output applies power and opens the N.C. solenoid, activating flow control function.

1st Stage Shutdown: The main valve begins closing at a predetermined number of gallons before the end of the load.

- HI output removes power and closes the N.C. solenoid. HI output remains off through load.
- LO output sends power to the limit switch. The N.O. solenoid remains open (de-energized) because limit switch contact is open. Low (Dwell) Flow: The main valve closes far enough to trip the limit switch contact and holds this position for low flow filling.
- LO output sends power through limit switch contact and closes the N.O. solenoid. This hydraulically locks the valve into a low

Final Closure: The main valve will close fully when the load is

 LO output removes power from the limit switch and N.O. solenoid. The N.O. solenoid opens and allows the main valve to close fully.

The OCV 127-9S consists of the following components, arranged as shown on the schematic diagram:

1 Model 65 Basic Valve (fail closed) 3 Two-Way Solenoid Pilot, N.C.

(2) Two-Way Solenoid Pilot, N.O.

(5) Needle Valve (closing speed) 7 Limit Switch (4) Model 1340 Pressure Reducing Pilot (6) Inline Strainer

(low flow setting)

PRESSURE TABLE

END CONNECTIONS	DUCTILE IRON		STEEL/SST			ALUMINUM			
STANDARD (Maximum Working Pressures at 100°F)									
THREADED	640 psi			640 psi		285 psi			
GROOVED	300 ps	i	300 psi			200 psi			
150# FLANGED	250 ps	i		285 psi	285 psi 285 psi				
300# FLANGED	640 ps	i		740 psi					
END CONNECTIONS	DUCTILE IRON	STEEL W	СВ	STEEL LCB	STE	STEEL/SST ALUMINU			
METRIC (Maximum Working Pressures at 37.78°C)									
THREADED	44.1 bar	44.1 bar		r 44.1 bar		4.1 bar	19.7 bar		
GROOVED	20.7 bar	20.7 bar		r 20.7 bar		0.7 bar	13.8 bar		
150# FLANGED	17.2 bar	19.7 bar		18.4 bar	19	9.0 bar	19.7 bar		
300# FLANGED	44.1 bar	51.0 ba	ar	48.0 bar 49		9.6 bar			

Based on ANSI flange ratings.

FLOW CHART

STANDARD SIZE	1 1/4"- 1 1/2"	2"	2 1/2"	3"	4"	6"	8"	10"
MAX. FLOW (GPM)	120	200	280	460	800	1800	3000	4200
METRIC SIZE	DN32 - DN40	DN50	DN65	DN80	DN100	DN150	DN200	DN250
MAX. FLOW (M3/HR)	27	45	64	105	182	409	681	954

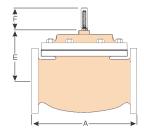
The OCV 127-9S is normally sized to match the meter size; however, in no case should the maximum velocity exceed 20 ft/sec (metric: 6 meters/sec).

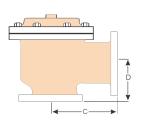
Resetting, maintenance and periodic testing instructions must be followed as described in detail in the applicable OCV IOM (Installation, Operation & Maintenance) Manual.

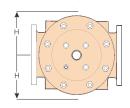
TRUCK/RAIL CAR LOADING & UNLOADING SYSTEMS

Model 127-9S

TYPICAL MATERIALS


DESCRIPTION	STANDARD
Body/Bonnet	Ductile Iron (epoxy coated), Carbon Steel (epoxy coated), Stainless Steel, Aluminum
Seat Ring	Stainless Steel, Bronze
Stem	Stainless Steel, Monel
Spring	Stainless Steel
Diaphragm	Buna-N, Viton (Nylon Reinforced)
Seat Disc	Buna-N, Viton
Pilot	Stainless Steel, Bronze
Other Pilot System Components	Stainless Steel, Bronze/Brass
Tubing & Fittings	Stainless Steel, Copper/Brass




GENERAL ARRANGEMENT & DIMENSIONS

DIM	END CONN.	1 1/4 - 1 1/2" (DN32-40)	2" (DN50)	2 1/2" (DN65)	3" (DN80)	4" (DN100)	6" (DN150)	8" (DN200)	10" (DN250)
А	SCREWED	8 3/4 (222)	9 7/8 (251)	10 1/2 (267)	13 (330)				
	GROOVED	8 ^{3/4} (222)	9 7/8 (251)	10 ^{1/2} (267)	13 (330)	15 ^{1/4} (387)	20 (508)		
	150# FLGD	8 ^{1/2} (216)	9 3/8 (238)	10 ^{1/2} (267)	12 (305)	15 (381)	17 ^{3/4} (451)	25 ^{3/8} (645)	29 ^{3/4} (756)
	300# FLGD	8 3/4 (222)	9 7/8 (251)	11 1/8 (283)	12 ^{3/4} (324)	15 ^{5/8} (397)	18 5/8 (473)	26 ^{3/8} (670)	31 1/8 (791)
C ANGLE	SCREWED	4 3/8 (111)	4 3/4 (121)	6 (152)	6 ^{1/2} (165)				
	GROOVED	4 3/8 * (111*)	4 3/4 (121)	6 (152)	6 ^{1/2} (165)	7 5/8 (194)			
	150# FLGD	4 1/4 (108)	4 3/4 (121)	6 (152)	6 (152)	7 1/2 (191)	10 (254)	12 11/16 (322)	14 7/8 (378)
	300# FLGD	4 3/8 (111)	5 (127)	6 ^{3/8} (162)	6 ^{3/8} (162)	7 13/16 (198)	10 ^{1/2} (267)	13 ^{3/16} (335)	15 ^{9/16} (395)
D ANGLE	SCREWED	3 1/8 (79)	3 ^{7/8} (98)	4 (102)	4 1/2 (114)				
	GROOVED	3 1/8* (79*)	3 7/8 (98)	4 (102)	4 1/2 (114)	5 5/8 (143)			
	150# FLG	3 (76)	3 7/8 (98)	4 (102)	4 (102)	5 ^{1/2} (140)	6 (152)	8 (203)	11 ^{3/8} (289)
	300# FLGD	3 1/8 (79)	4 ^{1/8} (105)	4 3/8 (111)	4 3/8 (111)	5 13/16 (148)	6 1/2 (165)	8 ^{1/2} (216)	12 ^{1/16} (306)
E	ALL	6 (152)	6 (152)	7 (178)	6 1/2 (165)	8 (203)	10 (254)	11 7/8 (302)	15 ^{3/8} (391)
F (opt)	ALL	3 ^{7/8} (98)	3 ^{7/8} (98)	3 ^{7/8} (98)	3 ^{7/8} (98)	3 ^{7/8} (98)	3 ^{7/8} (98)	6 ^{3/8} (162)	6 ^{3/8} (162)
Н	ALL	10 (254)	11 (279)	11 (279)	11 (279)	12 (305)	13 (330)	14 (356)	17 (432)

Metric Sizes shown in parenthesis (). $\,^*$ Grooved End not available in 1 $\,^{1/4}$ " (DN32)-

General representation of valve

TRUCK/RAIL CAR LOADING & UNLOADING SYSTEMS

Model 127-9S

TECHNICAL DATA

Temperature:

(Elastomers)

Buna-N
Viton
Fluorosilicone
EPDM
-40°F to 180°F
-40°F to 150°F
O°F to 230°F

Sizes:

• Screwed Ends: 1-1/4" - 3"

• Grooved Ends: 1-1/2" - 6" (globe & angle)

• Flanged Ends: 1-1/4" - 10" (globe); 1-1/4" - 6" (angle)

Pressure Rating:

(ANSI at 100°F)

• 250psi for Class 150# ANSI Flanged Ductile Iron

285psi for Steel/Stainless Steel & Aluminum

• 300# ANSI Flanges are available

Solenoid Voltage:

• Enclosure: Explosion Proof NEMA 4, 4X, 6P, 7, 9

Class I, Div I (standard)

Class I, Div 2 - ATEX, IECEX (opt)

Body: Brass, Stainless Steel

• Voltages: 24, 120, 240, 480 VAC; 12, 24 VDC

Body & Cover Material:

Ductile Iron

Stainless Steel

· Carbon Steel

Aluminum

Trim Material:

• Bronze/Brass

Copper

• Stainless Steel

Optional Components:

• Two-Stage Opening

Pre-Wired Junction Box

Visual Indicator

Items to Specify:

Fluid Type

Model Number

.

• Size

• Body & Trim Material

Solenoid Voltage

Globe or Angle

 Special Installation Requirements

ENGINEERING SPECIFICATIONS

The two-stage preset valve shall be a single-seated, line pressure operated, diaphragm actuated, pilot controlled globe valve. The valve shall seal by means of a corrosion-resistant seat and a resilient, rectangular seat disc. These, and other parts, shall be replaceable without removing the valve from the line. The stem of the main valve shall be guided top and bottom by integral bushings. Alignment of the body, bonnet and diaphragm assembly shall be by precision dowel pins. The diaphragm shall not be used as a seating surface, nor shall the pistons be used as an operating means. The pilot system shall be furnished complete, installed on the main valve and include two solenoid pilots, a needle valve and an inline strainer. The two-stage preset valve shall be operationally and hydrostatically tested prior to shipment. The main valve body and bonnet shall be Ductile Iron. All ferrous surfaces shall be coated with 4 mils of epoxy. The main valve seat ring shall be stainless steel. Elastomers (diaphragms, resilient seats and O-rings) shall be Buna-N. Solenoid pilots shall be Stainless Steel, as shall the needle valve and control line tubing. The solenoid and limit switch enclosure shall be explosion-proof and suitable for operation on <voltage> (see Technical Data section). The two-stage preset valve shall be suitable for operation at <X> psi (see Pressure Table) at flow rates up to <X> gpm (see Flow Chart). The two-stage preset valve shall be an OCV 127-9S, as manufactured by OCV, Tulsa, OK, USA.

OCV companies worldwide reserve the right to make changes without notice including product specification and configuration, content, description(s), dimensions etc. The information herein is subject to change without notice. OCV shall not be held liable for any errors. All rights reserved. © Copyright by OCV.

7400 East 42nd Place • Tulsa, Oklahoma 74145 • USA Phone: 1-918-627-1942 • Toll Free: 1-888-OCV-VALV (628-8258) Web: www.controlvalves.com • Email: usa@aquestia.com

